首页 > 工作总结 > 有关高三数学的工作总结范文(精选17篇)

有关高三数学的工作总结范文

时间:2025-04-16

有关高三数学的工作总结范文 篇1

  在校领导的关心下,李海军主任的指挥下,15届高三取得了辉煌的成绩,下面我就以下具体做法汇报如下:

  一、思想方面

  1、正确的指导思想,合理的教学计划是优秀成绩的保障。在高三开学前李海军主任定制好了实验班整个学年的工作计划以及工作重心。针对不同时期学生不同特点,定制好了对应的教学任务。

  2、统一思想。平常教研活动中,由王国平老师布置安排工作,在工作计划制定前,大家一般否会献计献策,踊跃发表自己的观点,甚至会有争论,但是当计划制定后,不论是赞同的该计划的还是反对该计划的,我们都会坚定不移地执行下去,确保工作顺利完成。(整理专题,整理错题,整理试卷的方式方法等。)

  二、教学工作方面

  常规教学方面:

  1、进度快。教学工作高效完成。15届数学组是高二上期开始加快教学进度的,5月份结束高三课程,利用暑期辅导,11月份一轮复习结束。我们正常教学时间不能缩短,只能在其他方面做出尝试,主要是缩短试卷、作业讲评时间,集中学生共性问题进行讲解,有些题目只提思路,不详细讲解。同时配备详细答案,学生可自行参阅。就是因为进度快,为我们后期的工作安排提供了时间上的保障。

  2、一轮复习。中规中矩。实验班的话因为主要目的是清北,所以在一轮时就在解析几何和导数两节着重讲解,我整理了近三年各地市高考真题及模拟试题,汇编了不同题型,对经典热点题型进行着重讲解及练习,并及时依据学生作业及考试反馈的情况有针对性的讲评。

  3、后一轮复习。一轮复习后学生普遍掌握了基本知识,基本技能,但是知识有遗忘,不熟练,应试技巧时间整体把握不足,因而设置一个“沉淀期”。期间每周三考,做到试卷批改不过夜,第一时间对试卷进行讲评。试卷类型有名校联考试卷,自编自整试卷,错题汇编试卷。难度上控制为两难一易。

  通过考试,给予学生时间消化一轮知识,同时深化学生对知识的理解,老师并对学生答题规范做出要求。通过这一阶段学生考试的时间如何安排,应试突发事件处理上的能力有所提高。考试成绩有了质的飞跃。

  4、二轮复习。中规中矩。我整理了各个专题,加深学生对知识体系的把握,同时注意知识点间的联系。实验班仍然注重导数和解析几何,同时配以大量练习,小卷或者考试。

  5、二轮复习后。大约4月中旬到5月中旬期间,很多学生出现了“高原期现象”,包括不少种子选手,这个时期我的工作重心转移到了如何帮助学生克服心理上的障碍,我利用下午自习课,或者课外活动时间等一切可以利用的时间对学生进行心理疏导工作,同时每周对种子选手进行座谈会,解决心理学习上的各种问题。经过一段时期的调整,孩子们回到了巅峰状态,也迎来了高考,都取得了很好的成绩。

  一分耕耘一分收获,经过高三的努力工作,最终得到了丰硕的回报。宏志班在高考中表现优异,其中5人考入清华北大。

  竞赛方面:

  15届竞赛基本上是从高二开始加强训练的。整个高二后暑期期间,我每天都是上午和下午备课和出题,学生下午考试,晚上讲卷,通过大量甚至可以说是超负荷训练,学生最终取得了优异的成绩,其中朱智斌同学和申奥同学获得省一等奖,另外7人二等奖,5人三等奖。

  三、细节把握

  1、从始至终重视书写与格式。

  2、注意学生的心理健康。

  3、注重学生的坏习惯的改正。

  4、尖子生单兵较量

  5、科学的成绩分析(先进的教学设备)

  四、不足之处

  复习时,尤其是一轮复习,不要凭历史经验来妄加猜测什么是重点什么不考,也不要觉得知识简单而略讲或不讲,一定要在一轮复习时涵盖所有的知识点。

有关高三数学的工作总结范文 篇2

  一个推导

  利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,

  同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

  两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).

  两个防范

  (1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

  (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

  三种方法

  等比数列的判断方法有:

  (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列.

  (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列.

  (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.

  注:前两种方法也可用来证明一个数列为等比数列.

有关高三数学的工作总结范文 篇3

  高三数学总复习既要立足于巩固所学的基础知识、掌握基本方法和技能,又要着眼于提高能力、深化思维;既要在复习中学全题型,又要避免“题海战术”,因此复习的质量直接关系到高考的成败。以下是的高三数学复习计划。

  一、指导思想:

  高三复习应根据本校学生的实际,立足基础,构建知识网络,形成完整的知识体系。要面向低、中档题抓训练,提高学生运用知识的能力,要突出抓思维教学,强化数学思想的运用,要研究高考题,分析相应的应试对策,更新复习理念,优化复习过程,提高复习效益。

  二、复习进度:

  按教研室下发的计划为准,结合本校实际,一轮在2月底3月初完成。材料以教研室下发材料为主,进行集体备课,难题删去。

  每章进行一次单元过关考试和一次满分答卷,统考前进行一次模拟考试练习。

  三、复习措施:

  1、 抓住课堂,提高复习效益。

  首先要加强集体研究,认真备课。集体备课要做到:“一结合两发挥”。一结合就是集体备课和个人备课相结合,集体讨论,同时要发挥每个教师的特长和优势,互相补充、完善。两发挥就是,充分发挥备课组长和业务骨干的作用,充分发挥集体的智慧和优势、集思广益。

  集体备课的内容:备计划、课时的划分、备教学的起点、重点、难点、交汇点、疑点,备习题、高考题的选用、备学情和学生的阶段性心理表现等。

  其次精选习题,注重综合 。复习中要选“题型小、方法巧、运用活、覆盖宽”的题目训练学生的应变能力。选有一定的代表性、层次性和变式性的题目取训练学生综合分析问题的能力。

  再次上好复习课和讲评课。复习课,既讲题也讲法,注重知识的梳理,形成条理、系统的结构框架,章节过后学生头脑中要清晰。要讲知识的重、难点和学生容易错的地方,要引导学生对知识横向推广,纵向申。复习不等于重复也不等于单纯的解题,应温故知新,温故求新,以题论法,变式探索,深化提高。讲出题目的价值,讲出思维的过程 ,甚至是学生在解题中的失败的教训和走过的弯路。功夫花在如何提高学生的分析问题和解决问题的能力上

  讲评课要紧紧的抓住典型的题目讲评,凡是出错率高的题目必须讲,必须再练习。讲解时要注意从学生出错的根源上剖析透彻 ,彻底根治。要做到:重点讲评、纠错讲评和辩论式讲评相结合,或者让学生讲题,给学生排疑解难,帮助学生获得成功。

  2、畅通反馈渠道,了解学生

  通过课堂提问、学生讨论交流、批改作业、评阅试卷、课堂板书以及课堂上学生情态的变化等途径,深入的了解学生的情况,及时的观察、发现、捕捉有关学生的信息调节教法,让教师的教最大程度上服务于学生。

  3、复习要稳扎稳打,注重反思

  数学复习要稳扎稳打,不要盲目的去做题,每次练习后都必须及时进行反思总结 。反思总结解题过程的俄 来龙去脉;反思总结此题和哪些题类似或有联系及解决这类问题有何规律可循5;反思总结此题还有无其它解法,养成多角度多方位的思维习惯;反思总结做错题的原因:是知识掌握不准确,还是解题方法上的原因,是审题不清还是计算错误等等。

  注意心理调节和应试技巧的训练,应试的技巧和心理的训练要三高三的第一节课开始,要贯穿于整个高三的复习课,良好的心理素质是高考成功的一个重要环节。我们数学老师在讲课时尤其是考试中主要锻炼学生的心理素质,我们教育学生要以平常心来对待每一次考试。

  4、强化数学思想方法的渗透,提高学生的解题能力

  在复习中要加强数学思想方法的复习,特别要研究解题中常用的思想方法:函数和方程的思想、数形结合思想、分类讨论思想、转化和化归的思想,还有极限的思想和运动变化的思想,而采用的方法有:换元法、待定系数法、判别式法、割补法等,逻辑分析法有分析法、综合法、数学归纳法和反证法等。对于这些数学思想和方法要在平日的教学中,,结合具体的题目和具体的章节 ,有意识的、恰当的进行渗透学习和领会,要让学生逐个的掌握他们的本质的特征和运用的基本的程序,做到灵活的运用和使用数学思想和方法去解决问题。复习中注重揭示思想方法在知识互相联系、互相沟通中的纽带作用。

有关高三数学的工作总结范文 篇4

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  不等式的判定:

  ①常见的不等号有“>”“b”或“a

  ③不等号的开口所对的数较大,不等号的尖头所对的数较小;

  ④在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等等。

有关高三数学的工作总结范文 篇5

  1.等差数列的定义

  如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.

  2.等差数列的通项公式

  若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.

  3.等差中项

  如果A=(a+b)/2,那么A叫做a与b的等差中项.

  4.等差数列的常用性质

  (1)通项公式的推广:an=am+(n-m)d(n,m∈N_).

  (2)若{an}为等差数列,且m+n=p+q,

  则am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列.

  (4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.

  (5)S2n-1=(2n-1)an.

  (6)若n为偶数,则S偶-S奇=nd/2;

  若n为奇数,则S奇-S偶=a中(中间项).

  注意:

  一个推导

  利用倒序相加法推导等差数列的前n项和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

  ①+②得:Sn=n(a1+an)/2

  两个技巧

  已知三个或四个数组成等差数列的一类问题,要善于设元.

  (1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.

  四种方法

  等差数列的判断方法

  (1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

  (2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通项公式法:验证an=pn+q;

  (4)前n项和公式法:验证Sn=An2+Bn.

  注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.

有关高三数学的工作总结范文 篇6

  本学期以来,高三数学备课组全体老师围绕着学校的中心工作,以全面提高学生的思想和文化素养为工作目标,积极开展科组的教学教研活动,努力提高教师的思想素质和业务素质,在认真探讨数学教育的特点,结合新教材和学生的实际情况,努力实施自主学习的教学模式上,做了一些工作,现总结如下进入高三以来,在各级领导的关心和支持下,全体高三数学备课组重视做好三个方面的工作。

  一、把握方向,夯实基础

  我校学生在数学方面基础显得比较薄弱。针对这一情况,学校领导非常重视,在各种会议上多次就数学的问题作了重要指示,提出了很多关于强化数学学科的具体措施。进入高三以来,数学老师统一了认识,把教学重点放在强调基础知识方面,并且持之以恒,一以贯之。其中我们特别强调学生应该充分利用上课的时间,强调对课本知识的理解,达到积累知识,夯实基础的目的。

  二、团结协作,群策群力

  高三的复习内容庞杂,容量很大,任务艰巨就显得任务繁重。如果每个老师都各自为阵,只顾自己班级,那就会成为一盘散沙。高考是对学生综合素质的考查,更是对全体教师能力的考查。面对繁重的高考复习任务,个人力量就显得很微弱。因此,形成团结一心,精诚合作的团队精神就显得尤为重要。为此,一年来,我们扎实开展备课组活动,充分发挥备课组在备考复习中的组织、安排、指导、协调功能,发挥备课组的集体智慧,群策群力,确保总复习高效、有序的运行。坚持做到“四定”、“四统一”即备课活动做到定时间、定地点、定内容、定主讲人;统一进度、统一资料、统一作业、统一考试,强化整体协作意识,做到信息,资源共享。分析研究学生状况和各自的教学情况,并对优质生、边缘生给予更多的关注,确保其成绩稳步提高。我们充分利用备课活动及各类考试评析活动,大家充交流思想,畅所欲言,集思广益,优势互补。全体备课组的老师们彼此虚心学习,互相请教,蔚然成风。

  三、紧扣《考纲》,有的放矢

  XX年的高考是稳中有变动,准确了解“变”在何处,及时调整复习方向,意义非常重大。

  针对考纲年年变化的情况,数学组特别要求每位数学老师都必须认真研究学习《考试大纲》、考试说明,和近三年的全国高考数学试题,特别注重研究《考纲》中变化的部分。凡是《考纲》中明确规定的考点,必须复习到位,不能有半点疏漏,对于有变化的内容则更加重视,绝不遗漏一个考点,也绝不放过一个变化点。

  复习一个考点的同时,我们也结合了适当的训练,以期达到巩固的目的'。对于资料的选择,我们坚持精选试题,精心组合,不搞盲目训练,有针对性、阶段性、计划性。更不搞题海战术,题不在多,贵在于精,在于质量,让学生练有所获。对于每一次训练我们都必须精讲,而且讲必讲透,重在落实。在第二轮的复习中,针对学生主观题解题能力较弱的情况,数学组及时采取“每日一练”的办法,即每天做一题综合题,全批全改。通过强化综合题训练,掌握解题技巧,提高学生综合题解题能力。

  此外,我们还根据领导小组的安排,精心安排数学的优质生辅导。针对这些不同层次的学生,我们不仅注意的学生知识与能力的提高,也注意加强了学习方法的指导,对他们提出了不同的目标和要求。例如,基础较好的学生我们就以更高的目标要求,力争在此基础上创造佳绩,而对于基础薄弱的学生则要求他们夯实基础,力争有较大的提高。注意加强与他们的沟通,消除学生的心理困惑,缓解考前心理压力,注意考后的心理疏导。通过这些措施,让参与辅导的学生在学习更加努力,心理更加健康,知识更加扎实,能力不断提高。

  “长风破浪会有时,直挂云帆济沧海”前进的道路上有很多困难艰险,但我们将锲而不舍。“他山之石,可以攻玉”我们也将虚心学习别人的经验,不断地充实自己,同心同德,扎实工作。

有关高三数学的工作总结范文 篇7

  第二部分函数与导数

  1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

  2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;

  ⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、等);⑨导数法

  3.复合函数的有关问题

  (1)复合函数定义域求法:

  ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

  (2)复合函数单调性的判定:

  ①首先将原函数分解为基本函数:内函数与外函数;

  ②分别研究内、外函数在各自定义域内的单调性;

  ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

  注意:外函数的定义域是内函数的值域。

  4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

  5.函数的奇偶性

  ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;

  ⑵是奇函数;

  ⑶是偶函数;

  ⑷奇函数在原点有定义,则;

  ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

  (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

有关高三数学的工作总结范文 篇8

  本人是安徽人,于20xx年考入安庆市第一中学安徽省理科实验班,20xx年高考627分(忒失误了~~)未被浙江大学录取,次年642分(其实更失误)考入北京航空航天大学,现为北航在读学生。曾在高中获得20xx年全国化学竞赛三等奖-全国生物竞赛三等奖,20xx年全国化学竞赛二等奖(第一名)、全国数学竞赛二等奖。

  距离高考已有两年时间了,看到自己的学弟学妹们辛苦而又痛苦地准备高考的时候,总会让自己想起当年的高中生活。同时,也希望能将自己的经验与他们分享,希望能给他们带来帮助。(本人不强,强人看到了表笑我~~)

  由于高中是在理科实验班,我们有着自己特殊的计划,即高一年级就得把高中三年的理科课程全部上完......而高二一年的重点基本在竞赛上,和其他班的进度不一样。所以不具有可比性~~本人就从高三说起吧。

  高三,基本上新课已经全部上完,主要的便是复习工作。那么在复习过程中,我的一些理解是:

  数学:

  很多同学觉得数学很难,其实......它也的确很难~~但是可以说高中的考题,虽千变万化,但总是有规律的。在复习时,除了要保证基础知识较为灵活地应用外,应该做好其他一些事情。

  1、多做些模拟题。从题目中去寻找规律和方法。数学的内容不多,但是变形很多。想要每道题都能尽在你掌握之中,在刚刚上高三的时候是不可能的,只能靠多做练习去锻炼。方法是在练习中获得的。当你学到一种新的方法的时候,尽量把那道题抄下来,想一想为什么用这种方法,用其他的方法行不行。然后在理解这样的方法后,自己不看答案重新做一遍。如果能够很顺利地作出,说明这样的方法你已经知道了,如果下次再遇到类似的题目,即使你不会,但是在看到答案后你又会有一个新的印象,基本上两次到三次,这种方法你就学会了。而且熟能生巧的道理大家都懂,多做模拟题还可以提高自己的做题速度,这个随后说~~此外,做过几套高考真题后,你会发现一些规律,比如,选择填空题中的圆锥曲线题基本不用硬算,而且用到准线的时候特别多~~解答题中的三角函数,基本上从正弦定理、余弦定理和简单的三角变换中出,不会超过这个范围;证明题中若出现涉及有规律的n项的,经常用到数学归纳法等......当你掌握这些规律后,在做题时你就不会像一只无头苍蝇一样乱窜了。

  2、易错的地方需要记录。高考题中很多地方可能会设置陷进。比如填空题中答案到底是一个还是两个?有没有计算判别式的范围?一元二次方程的二次项系数是不是为零,概率题目中会不会只有整数没有小数,区间应该是开的还是闭的?等等.....其实这些地方大家在做题时肯定经常遇到。一旦自己犯错了,不要觉得是自己不小心,反正会做的,没事。这是个危险的信号,因为在高考时,你很可能会犯下一些你平时犯过的错误,到时候你就后悔莫及了。所以遇到这种错误时,自己停下来,再看两遍,想想自己为什么错了,忽略了哪些地方。做题时可以随笔划下题目中的一些隐含信息,养成习惯后,高考中才会万无一失。另外大家容易忽略的是一些概念题。这类题目出的概率很小,但是一旦出了,便是在选择填空中,分值还是不小的。例如:正态分布与标准正态分布的转换公式~映射的概念等等~这些大家在平时一旦遇到,就顺带看下,别到了高考时因为它们而使自己的高考失败了

  3、注意控制时间。可能部分老师说选择填空一起40~50分钟,后面大题平均一题10分钟,但是我认为这样的速度太慢了。当时在高考前我的速度是40分钟搞定所有题目,并且保证在140以上。其实我快的原因有几个,一是计算速度快,这既包括初中打下的多项式计算的功底,还包括高中联系的导数等的计算,但是快速中保持高的正确率,还有个很重要的原因是题目做多了,很多式子都是非常熟悉的,看到了自己熟悉的式子,当然会觉得有信心。一旦发现自己认为很诡异的式子,就会开始检查前面做的对不对,于是可以节省很多时间。第二个是方法得当。做选择填空的时候有个很好的方法叫做特殊值法,但是很多同学都不太会用~这个......只可意会不可言传啊......另外还有把选项代入原题的方法、逻辑推理法等等(比如如果A对了,那么D一定对,则A和D都不对~)这些方法可以帮助你很快地解决选择填空,我当时估计选择填空一起只要10分钟不到。因为很多题都用这些方法就搞定了。而后面的大题,前文说了,只要方法得当,其实还是很快的。但是一定要保持正确率。

  4、以正确的态度对待考试。首先要给自己一个定位:我应该考多少分?当发现题目很难时,很多同学就开始慌张,于是做一题不会一题,做一题错一题。这样考得非常砸。一旦发现题目难,马上改变态度,重新定位自己:我该得多少分?其实更实际一点:我该做对哪些题?对于一份正常的考卷来说,绝大部分题目还是较为简单的基础题,只要稍加功夫就可以做出。而一般的被称作难的考试,难的原因,大部分在于运算量的增大,使同学们做每一题所花的时间都比自己估计的偏多,于是就会造成恐慌~其实只要大家静下心来,把自己该做对的做对,你的分数一定不会低的。另外,不要受到别人的干扰。高中复读的时候我的同桌是后来的安徽省榜眼,但是平时每次数学他都考不过我,因为当他40分钟就看到一个人悠闲地在他身边等待考试结束的时候,便开始心慌,后面做题时总会多多少少出点问题。到了高考,没人干扰他了,便考了150。在做题时,发现难题,5分钟还没有思路的,立刻跳过,否则,你的这次考试一定会死在这道题上。这其中的道理,相信大家都懂,不多说了。

有关高三数学的工作总结范文 篇9

  1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

  2.判定两个平面平行的.方法:

  (1)根据定义--证明两平面没有公共点;

  (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

  (3)证明两平面同垂直于一条直线。

  3.两个平面平行的主要性质:

  (1)由定义知:“两平行平面没有公共点”;

  (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;

  (3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;

  (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;

  (5)夹在两个平行平面间的平行线段相等;

  (6)经过平面外一点只有一个平面和已知平面平行。

有关高三数学的工作总结范文 篇10

  第一部分集合

  (1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;

  (2)注意:讨论的时候不要遗忘了的情况。

  第二部分函数与导数

  1、映射:注意

  ①第一个集合中的元素必须有象;

  ②一对一,或多对一。

  2、函数值域的求法:

  ①分析法;

  ②配方法;

  ③判别式法;

  ④利用函数单调性;

  ⑤换元法;

  ⑥利用均值不等式;

  ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);

  ⑧利用函数有界性;

  ⑨导数法

  3、复合函数的有关问题

  (1)复合函数定义域求法:

  ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。

  ②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

  (2)复合函数单调性的判定:

  ①首先将原函数分解为基本函数:内函数与外函数;

  ②分别研究内、外函数在各自定义域内的单调性;

  ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

  注意:外函数的定义域是内函数的值域。

  4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

  5、函数的奇偶性

  (1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;

  (2)是奇函数;

  (3)是偶函数;

  (4)奇函数在原点有定义,则;

  (5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

  (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;

有关高三数学的工作总结范文 篇11

  高中数学组

  本学期我担任高三理科(5)、文科(7)两个班的数学教学工作,经过一个学期的努力,两个班在前几次月考中都取得了比较好的成绩。高三的学习是紧张的,一学期的时光过得很快,回顾这一学期的工作,我主要从以下几个方面对本学期教学工作情况作如下总结:

  1、备课:研读考纲,梳理知识。 根据课标要求,提前备好课,写好教案。备课时认真钻研教材、教参,学习好大纲,虚心向同年组老师学习、请教。力求吃透教材,找准重点、难点。积极参加教研室组织的教研活动,老教师的指导和帮助下进行集体备课,仔细听,认真记,领会精神实质。

  2、上课 :重视课本,狠抓基础,构建学生的良好知识结构和认知结构。 上好课的前提是做好课前准备。上课时认真讲课,力求抓住重点,突破难点,精讲精练。运用多种教学方法,从学生的实际出发,注意调动学生学习的积极性和创造性思维,使学生有举一反三的能力。课间巡视时,注意对学困生进行面对面的辅导,课后及时做课后记,找出不足。

  3、辅导 :精心选题,针对性讲评。

  我利用课余时间对学生进行辅导,不明白的耐心讲解,教给他们好的记忆方法,好的学习习惯,做到对所学知识巩固复习,及时查缺补漏。 1

  4、作业 :狠抓常规,强化落实与检查。

  5、认真布置、批改作业。在教学中布置作业要有层次性,针对性。并认真批改作业,做到有质量全批,在作业过程出现不同问题及时作出分类总结并记载下来,课前分析讲解。并针对有关情况及时改进教学方法,做到有的放矢。由于高三的课业负担较重,我只布置适量作业,利用好订的学案,且作业总是经过精心地挑选,适当地留一些有利于学生能力发展的、发挥主动性和创造性的作业。

  6、爱就是了解。对尖子生时时关注,不断鼓励。对学习上有困难的学生,更要多给一点热爱、多一点鼓励、多一点微笑。尊重学生的人格,关爱学生,激起学习激情。热爱学生,走近学生,哪怕是一句简单的鼓励的话,都能激起学生学习数学的兴趣,进而激活学习数学的思维。面向全体学生,进一步要求班主任加强家校联系。我们打破了过去只等到学生犯错后才和学生家长联系的情况,我要求班主任经常与学生家长联系,即时了解学生的家庭情况,同时也把学生在校的情况反馈给学生家长,特别是那些学困生。对于个别学生还请家长到学校来协助教育。以上措施的实行已见成效,获得社会家长的好评。

  7、个人学习:充分发挥集体备课的优势,积极学习其他教师的各种教育理论,以充实自己,以便在工作中以坚实的理论作为指导,更好地进行教育教学。坚持每周集体备课,认真听课,探讨课堂优化教学,有时探讨专题,群策群力,并主要做法:1、 每周每位教师轮流出一套滚动试题;2、 每周至少小测一次;3、 每月或每单元大测一次;4、每次月考组织高三综合 2测评一次;5、总结,反思。

  以上是我这学期的工作总结,还有很多需要完善和改进的地方,我将继续努力,虚心求教,争取下学期取得更圆满的成绩。

  3

有关高三数学的工作总结范文 篇12

  (1)先看“充分条件和必要条件”

  当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

  但为什么说q是p的必要条件呢?

  事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

  (2)再看“充要条件”

  若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

  回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

  (3)定义与充要条件

  数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

  显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

  “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

  (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

有关高三数学的工作总结范文 篇13

  在学校领导、高三年级组的领导下,20xx届高三复习顺利结束了。高三数学备课组按照学校,年级制定的复习备考计划进行实施,并适时地加以充实和完善,全体高三数学老师同心协力,并积极进行教学改革,悉心研讨和努力实践,调动学生复习主动性,充分发挥学生的主体作用,经过实验,效果良好,复习效率和质量也大大提高。使今年我校高考数学成绩再上新台阶。成绩的取得,源于各方面的因素,现总结如下:

  一、系统、扎实、科学、创新的复习备考

  1、研讨考纲,分析考点,设置梯度。高三数学备课组组织教师研讨高考考试说明,明确各章节知识的考点分布及其要求层次,在复习过程中根据我校学生的基础和智力现状,狠抓对基础知识的复习,再结合知识本身的重点、难点,设置好复习题的梯度和难度。做到有的放矢,尽可能减少无效劳动。

  2、团结协作,发挥特长。备课组坚持集体备课,精心设计复习教学方案,统一教学目标、要求及复习的大致进度,理清各章节内容的知识网络及其交汇点(因高考常在知识网络交汇点上命题),准确把握各复习内容的重点和难点,疑难问题集体讨论,老师们各抒己见,找出最佳解决办法,充分发挥了备课组的集体智慧。

  3、回归课本,狠抓基础,开拓创新。备课组以课本知识点为出发点,狠抓对“三基”的落实,并选好一本主干复习资料和套题,(第一阶段用《名师一号》),但又不过分依赖复习资料,对资料中过时、过偏、过难的内容,我们进行了大胆舍弃,同时,教师把富有新意、能启迪思维、体现重要数学思想方法、反映时代气息的习题及时补充进去,另外,老师自己也改编了一些题,重视单元小综合,适当自编或改编知识网络交汇点上的题目,这些自编题、自造题的应用,对于培养学生的发散思维,使学生们加深对各部分知识的内在联系的认识,因而从中感悟出数学的真谛,最终收到了相当好的效果。

  4、拓宽课堂教学渠道,全面提高学生能力。课堂教学是提高教学质量的关键环节,因此,在如何提高课堂复习效率和复习质量方面,几个老师都作了积极的探索和试验,进行了大胆教学改革。在教学中我们注意发挥教师的主导作用和创新意识,在传授知识的同时,指导学法,发展智力,培养能力,并适时地渗透重要的数学思想方法。教学中着力体现学生的主体作用,努力提高学生的主动参与意识,激发他们积极思维,挖掘其潜能和非智力因素,使他们养成独立思考、勇于探索、善于反思、勤于积累、不断创新的好习惯。大家都认识到,只有把学生的学习积极性充分调动起来了,养成了良好的学习习惯和思维品质,高考复习的质量才有保证。因为内因是决定因素,外因必须通过内因才能起作用。

  5、滚动测练、螺旋式上升。高三数学备课组全体老师,分工轮流做好数学每周一练、单元过关测验、综合训练题、模拟考试试题的命题和制卷工作,把好质量关。通过滚动练习、限时训练和模拟考试使学生逐步增强速度意识、质量意识,提高了学生的运算能力、逻辑思维能力、空间想象能力和综合运用知识的能力,为高考作了较充分的`准备。

  6、互听互学,扬长避短。为提高复习质量,备课组老师之间经常相互听课。通过听课,相互学习,取他人之长,补己之短。提高了教学水平和复习效果。

  7、勤字为首,真情感化。晚自习下班辅导工作抓得紧,做到常下班、常辅导,不仅辅导本学科知识,还有针对性地找学生谈心,勾通了思想,联络了感情,也消除他们的心理障碍。指导答题技巧,以及如何调整好心理状态,做到轻装上阵。

  8、认真反馈,不断改进。做好本备课组教学情况的收集、反馈工作,各个老师自觉根据各班教学情况进行了学生评教活动,对帮助科任教师改进不足之处,提高教学水平起到了一定的促进作用。

  9、培养“尖子”、激励“差生”。做好单科尖子学生的培养和鼓励工作,各科任教师根据几次模拟考试成绩确定出各班尖子生名单,及时找他们谈心,并加以指导和鼓励。根据一学年的跟踪,大部分尖子的成绩较稳定。同时也主动配合级组、班级抓好临界生、“差生”的辅导工作。

  二、高三数学备课组浓厚的高考研究气氛

  随着高考的改革力度的加大,高考更加突出对各种数学能力与素质、潜能的考查,因此,要提高高考成绩,必须走教科研之路。

  1、集体研讨,团结攻坚。成立高考核心备课小组,更充分发挥高考核心备课组的作用。高考核心备课小组重点对近几年来的高考试题进行了深入的研究和探讨。并为我们献计献策,使我们的高考备考少走了弯路,复习更具有针对性。

  2、中心开花,备课组每周组织一次集研活动,设置中心问题,每个教师畅所欲言,然后各个击破。由于高考是高三全年的攻坚战,因此备课组的活动始终围绕高考备考这个中心进行。

  3、促使学生突变,创设突变机遇。我们认为:学生在第二轮和第三轮复习是数学成绩提高的良好阶段,为此,我们组织老师精心编拟了8个专题,教师在这两轮复习的课堂教学是帮助学生“归纳—提高”的导航。因此,我们认真做好第二、三轮复习的研讨工作,由刘宁,胡学敏老师分别承担了的第二、三轮高考复习研讨观摩课,准备充分,具有观摩性和示范性,为学生知识归类提高设置了明确的航标。并且认真研究外来综合试卷,精心编组,精心删减。取舍,宁可老师多吃点苦,也不让学生多走一步弯路,具有科学性!

  4、采集信息,科学巧干。备课组注意采集各地高考备考及高考命题方面信息,通过去伪存真,及时加工,科学地复习提高,为高考赢得时间,也做到有的放矢。 总之,学校行政、高三级组的正确领导,有全提高三数学老师的勤奋工作,还有其他老师的大力支持和学生的奋力拼搏,才使我校今年数学高考成绩再上新台阶,再创新辉煌。尽管今年我们取得了较好的成绩,积累了一些成功经验,但仍有许多不足和遗憾:

  1)各班学生成绩参差不齐,这给我们在教学上带来一定的困难,例如,到底应该以哪一层学生为主攻对象更合适、更科学?因为现在录取率这么高,怕甩掉了不该甩的学生,同时若只照顾优生,差生也有意见,真是左右为难。

  2)对差生的培养措施和力度还不够。

  3)对差生的学习积极性还没有完全调动起来,对其非智力因素挖掘得不够,练习还不够到位,没有形成应有的能力,故这部分学生的高考成绩不够理想。

  4)老师有时讲得过多,包得过多的教法还需进一步改进。

有关高三数学的工作总结范文 篇14

  一、集合与简易逻辑

  1.集合的元素具有确定性、无序性和互异性.

  2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.

  3.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

  4.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.

  5.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.

  原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.

  8.充要条件

  二、函数

  1.指数式、对数式,

  2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.

  (2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.

  (3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.

  3.单调性和奇偶性

  (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.

  偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.

  (2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.

  复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)

  4.对称性与周期性(以下结论要消化吸收,不可强记)

  (1)函数与函数的图像关于直线(轴)对称.

  推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称.

  推广二:函数,的图像关于直线对称.

  (2)函数与函数的图像关于直线(轴)对称.

  (3)函数与函数的图像关于坐标原点中心对称.

  三、数列

  1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系

  2.等差数列中

  (1)等差数列公差的取值与等差数列的单调性.

  (2)也成等差数列.

  (3)两等差数列对应项和(差)组成的新数列仍成等差数列.

  (4)仍成等差数列.

  (5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;

  (6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和-偶数项和”=此数列的中项.

  (7)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.

  (8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).

  3.等比数列中:

  (1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.

  (2)两等比数列对应项积(商)组成的新数列仍成等比数列.

  (3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;

  (4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和.

  (5)并非任何两数总有等比中项.仅当实数同号时,实数存在等比中项.对同号两实数的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.

  (6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).

  4.等差数列与等比数列的联系

  (1)如果数列成等差数列,那么数列(总有意义)必成等比数列.

  (2)如果数列成等比数列,那么数列必成等差数列.

  (3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.

  (4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.

  如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.

  5.数列求和的常用方法:

  (1)公式法:①等差数列求和公式(三种形式),

  ②等比数列求和公式(三种形式),

  (2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.

  (3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).

  (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一).

  (5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和

  (6)通项转换法。

  四、三角函数

  1.终边与终边相同(的终边在终边所在射线上).

  终边与终边共线(的终边在终边所在直线上).

  终边与终边关于轴对称

  终边与终边关于轴对称

  终边与终边关于原点对称

  一般地:终边与终边关于角的终边对称.

  与的终边关系由“两等分各象限、一二三四”确定.

  2.弧长公式:,扇形面积公式:1弧度(1rad).

  3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

  4.三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角

  5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

  6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.

  7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

  角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.

  8.三角函数性质、图像及其变换:

  (1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

  注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?

  (2)三角函数图像及其几何性质:

  (3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.

  (4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.

  9.三角形中的三角函数:

  (1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.

  (2)正弦定理:(R为三角形外接圆的半径).

  (3)余弦定理:常选用余弦定理鉴定三角形的类型.

  五、向量

  1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.

  2.几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).

  3.两非零向量平行(共线)的充要条件

  4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2.

  5.三点共线;

  6.向量的数量积:

  六、不等式

  1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.

  (2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);

  (3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);

  (4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.

  2.利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).

  3.常用不等式有:(根据目标不等式左右的运算结构选用)

  a、b、c R,(当且仅当时,取等号)

  4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法

  5.含绝对值不等式的性质:

  6.不等式的恒成立,能成立,恰成立等问题

  (1)恒成立问题

  若不等式在区间上恒成立,则等价于在区间上

  若不等式在区间上恒成立,则等价于在区间上

  (2)能成立问题

  (3)恰成立问题

  若不等式在区间上恰成立,则等价于不等式的解集为.

  若不等式在区间上恰成立,则等价于不等式的解集为,

  七、直线和圆

  1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

  2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.

  (2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等直线的斜率为-1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点.

  (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

  3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

  4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

  5.圆的方程:最简方程;标准方程;

  6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

  (1)过圆上一点圆的切线方程

  过圆上一点圆的切线方程

  过圆上一点圆的切线方程

  如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程.

  如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离).

  7.曲线与的交点坐标方程组的解;

  过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程.

  八、圆锥曲线

  1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

  (1)注意:①圆锥曲线第一定义与配方法的综合运用;

  ②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的.正数,抛物线点点距除以点线距商是等于1.

  2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中,椭圆中、双曲线中.

  重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.

  3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:

  ①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.

  ②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.

  ③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式

  ④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.

  4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

  注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.

  ②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.

  ③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.

  九、直线、平面、简单多面体

  1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算

  2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.

  3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.

  4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.

  如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),

  如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.

  5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体

  6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.

  正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.

  7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.

  十、导数

  1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)

  2.多项式函数的导数与函数的单调性

  在一个区间上(个别点取等号)在此区间上为增函数.

  在一个区间上(个别点取等号)在此区间上为减函数.

  3.导数与极值、导数与最值:

  (1)函数处有且“左正右负”在处取极大值;

  函数在处有且左负右正”在处取极小值.

  注意:①在处有是函数在处取极值的必要非充分条件.

  ②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.

  ③单调性与最值(极值)的研究要注意列表!

  (2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”

  函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;

  注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。

有关高三数学的工作总结范文 篇15

  xx年是高考中实施新课程的第一年。高考已结束,一切在情理之中,一切又在探索之中,我们学校也取得了一定的成绩,回顾一年来走过的脚印,依然历历在目。从高三数学备考第一天开始,根据过去的实践经验,心理很清楚该怎么做,同时也知道这一仗一定是很艰苦的,很多事情没有完全反应过来,就卷入了备考激流中,没有退路,只能是随流勇进。

  面对文科生的数学基础,我们只能是一方面延长第一轮复习时间,减少专题复习,另一方面降低所学内容难度。但这样做只能是捉襟见肘,月月有月考,周周有综合练习,很多学生在这种枪林弹雨的日子里,早就伤痕累累,寸步难行。没办法我们只能步步前进,希望能出成绩。

  我们具体的做法是:

  第一轮单元复习(从20xx年10月——20xx年3)。第一轮复习是基础,是学生高考成功的关键。我们制定的目标是“全面、细致、扎实,注意基础知识落实,”具体策略是“高度重视,以熟悉教材为中心,坚持归纳和反思,坚持训练和解题。”落实好每一个知识点,提高解题能力,讲完每一章节内容后,有小结,有测验,有评讲,有提高。全面细致的第一轮复习起到了明显效果。

  第二轮专题复习(20xx年4月——5月)。确立的指导思想是“重视知识体系的构建和能力的提升”。从第二轮复习开始,我们穿插进行选择题、填空题和解答题专项训练,。解填空题的基本要求是“正确、合理、迅速”。“合理是前提”,“迅速是基础”,“正确是根本”。迅速的基础是:概念清楚,推理明白,运算熟练,合理跳步,方法灵活。因此,要在“准”、“巧”、“快”上下功夫。让学生掌握解选择题常用方法特例法,筛选法,代入法,图解法

  第三轮冲刺复习(20xx年5月——6月)。我们提出了“调整(心态)、巩固(基础)、充实(薄漏)、提高(能力)”的八字方针,对学生指导性极强,整合了各地的复习资料,结合个人心得,同时要求学生对试卷进行错题收集和归类整理,这也是一种很有效的复习方式。

  最后的十天冲刺复习,我们给学生提出了灵感复习法,要求“回归基础,回

  归教材”。抓好两条复习主线,一方面是对照考纲看教材,注重基础知识;另一方面是对照试卷看题目,查漏补缺,以适度紧张的平常心、饱满的精神状态和强烈的自信心,搞好后面10天的灵感复习。

  经过一年的努力,在今年的高考中取得了不错的成绩,那只能代表过去,正所谓“战斗正未有穷期”,面临着下一年的高考,我们需要进行新的学习和接受新的挑战。我们有决心也有信心,一如既往的努力,争取新的成绩!

  高考虽然结束,却留下一些存在的问题引起我们深思:

  1、我们是首届使用新教材,对教材的把握和知识内容体系的.“度”的控制,以及教学进度的掌握均存在一定的缺憾。导致学生基础知识遗忘率高,教师教的辛苦学生学的也累。

  2、学校的两条线复习①学生自主复习;②教师复习安排,并轨进行这是科学的。但是大多数学生还不是很配合。

  3、我们的复习强度够不够?

  4、讲、练、批、评的比例是否安排恰当吗?

  5、对差生的积极性有没有完全调动起来?对非智力因素挖掘得够不够?

有关高三数学的工作总结范文 篇16

  求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?以下是小编整理的高三数学知识点总结,欢迎阅读。

  1. 对于集合,一定要抓住集合的代表元素,及元素的确定性、互异性、无序性。

  中元素各表示什么?

  注重借助于数轴和文氏图解集合问题。

  空集是一切集合的子集,是一切非空集合的真子集。

  3. 注意下列性质:

  (3)德摩根定律:

  4. 你会用补集思想解决问题吗?(排除法、间接法)

  的取值范围。

  6. 命题的四种形式及其相互关系是什么?

  (互为逆否关系的命题是等价命题。)

  原命题与逆否命题同真、同假;逆命题与否命题同真同假。

  7. 对映射的概念了解吗?映射f:AB,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

  (一对一,多对一,允许B中有元素无原象。)

  8. 函数的三要素是什么?如何比较两个函数是否相同?

  (定义域、对应法则、值域)

  9. 求函数的定义域有哪些常见类型?

  10. 如何求复合函数的定义域?

  义域是_____________。

  11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

  12. 反函数存在的条件是什么?

  (一一对应函数)

  求反函数的步骤掌握了吗?

  (①反解x;②互换x、y;③注明定义域)

  13. 反函数的性质有哪些?

  ①互为反函数的图象关于直线y=x对称;

  ②保存了原来函数的单调性、奇函数性;

  14. 如何用定义证明函数的单调性?

  (取值、作差、判正负)

  如何判断复合函数的单调性?)

  15. 如何利用导数判断函数的单调性?

  值是( )

  A. 0B. 1C. 2D. 3

  a的最大值为3)

  16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?

  (f(x)定义域关于原点对称)

  注意如下结论:

  (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

  17. 你熟悉周期函数的定义吗?

  函数,T是一个周期。)

  如:

  18. 你掌握常用的图象变换了吗?

  注意如下翻折变换:

  19. 你熟练掌握常用函数的图象和性质了吗?

  的双曲线。

  应用:①三个二次(二次函数、二次方程、二次不等式)的关系二次方程

  ②求闭区间[m,n]上的最值。

  ③求区间定(动),对称轴动(定)的最值问题。

  ④一元二次方程根的分布问题。

  由图象记性质! (注意底数的限定!)

  利用它的单调性求最值与利用均值不等式求最值的区别是什么?

  20. 你在基本运算上常出现错误吗?

  21. 如何解抽象函数问题?

  (赋值法、结构变换法)

  22. 掌握求函数值域的常用方法了吗?

  (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)

  如求下列函数的最值:

  23. 你记得弧度的定义吗?能写出圆心角为,半径为R的弧长公式和扇形面积公式吗?

  24. 熟记三角函数的定义,单位圆中三角函数线的定义

  25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

  (x,y)作图象。

  27. 在三角函数中求一个角时要注意两个方面先求出某一个三角函数值,再判定角的范围。

  28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

  29. 熟练掌握三角函数图象变换了吗?

  (平移变换、伸缩变换)

  平移公式:

  图象?

  30. 熟练掌握同角三角函数关系和诱导公式了吗?

  奇、偶指k取奇、偶数。

  A. 正值或负值B. 负值C. 非负值D. 正值

  31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

  理解公式之间的联系:

  应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)

  具体方法:

  (2)名的变换:化弦或化切

  (3)次数的变换:升、降幂公式

  (4)形的变换:统一函数形式,注意运用代数运算。

  32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

  (应用:已知两边一夹角求第三边;已知三边求角。)

  33. 用反三角函数表示角时要注意角的范围。

  34. 不等式的性质有哪些?

  答案:C

  35. 利用均值不等式:

  值?(一正、二定、三相等)

  注意如下结论:

  36. 不等式证明的基本方法都掌握了吗?

  (比较法、分析法、综合法、数学归纳法等)

  并注意简单放缩法的应用。

  (移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)

  38. 用穿轴法解高次不等式奇穿,偶切,从最大根的右上方开始

  39. 解含有参数的不等式要注意对字母参数的讨论

  40. 对含有两个绝对值的不等式如何去解?

  (找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

  证明:

  (按不等号方向放缩)

  42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或△问题)

  43. 等差数列的定义与性质

  0的二次函数)

  项,即:

  44. 等比数列的定义与性质

  46. 你熟悉求数列通项公式的常用方法吗?

  例如:(1)求差(商)法

  解:

  [练习]

  (2)叠乘法

  解:

  (3)等差型递推公式

  [练习]

  (4)等比型递推公式

  [练习]

  (5)倒数法

  47. 你熟悉求数列前n项和的常用方法吗?

  例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

  解:

  [练习]

  (2)错位相减法:

  (3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

  [练习]

  48. 你知道储蓄、贷款问题吗?

  △零存整取储蓄(单利)本利和计算模型:

  若每期存入本金p元,每期利率为r,n期后,本利和为:

  △若按复利,如贷款问题按揭贷款的每期还款计算模型(按揭贷款分期等额归还本息的借款种类)

  若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

  p贷款数,r利率,n还款期数

  49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

  (2)排列:从n个不同元素中,任取m(mn)个元素,按照一定的顺序排成一

  (3)组合:从n个不同元素中任取m(mn)个元素并组成一组,叫做从n个不

  50. 解排列与组合问题的规律是:

  相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

  如:学号为1,2,3,4的四名学生的.考试成绩

  则这四位同学考试成绩的所有可能情况是( )

  A. 24B. 15C. 12D. 10

  解析:可分成两类:

  (2)中间两个分数相等

  相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,有10种。

  共有5+10=15(种)情况

  51. 二项式定理

  性质:

  (3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第

  表示)

  52. 你对随机事件之间的关系熟悉吗?

  的和(并)。

  (5)互斥事件(互不相容事件):A与B不能同时发生叫做A、B互斥。

  (6)对立事件(互逆事件):

  (7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

  53. 对某一事件概率的求法:

  分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

  (5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

  如:设10件产品中有4件次品,6件正品,求下列事件的概率。

  (1)从中任取2件都是次品;

  (2)从中任取5件恰有2件次品;

  (3)从中有放回地任取3件至少有2件次品;

  解析:有放回地抽取3次(每次抽1件),n=103

  而至少有2件次品为恰有2次品和三件都是次品

  (4)从中依次取5件恰有2件次品。

  解析:∵一件一件抽取(有顺序)

  分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

  54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

  55. 对总体分布的估计用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

  要熟悉样本频率直方图的作法:

  (2)决定组距和组数;

  (3)决定分点;

  (4)列频率分布表;

  (5)画频率直方图。

  如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

  56. 你对向量的有关概念清楚吗?

  (1)向量既有大小又有方向的量。

  在此规定下向量可以在平面(或空间)平行移动而不改变。

  (6)并线向量(平行向量)方向相同或相反的向量。

  规定零向量与任意向量平行。

  (7)向量的加、减法如图:

  (8)平面向量基本定理(向量的分解定理)

  的一组基底。

  (9)向量的坐标表示

  表示。

  57. 平面向量的数量积

  数量积的几何意义:

  (2)数量积的运算法则

  58. 线段的定比分点

  ※. 你能分清三角形的重心、垂心、外心、内心及其性质吗?

  59. 立体几何中平行、垂直关系证明的思路清楚吗?

  平行垂直的证明主要利用线面关系的转化:

有关高三数学的工作总结范文 篇17

  第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

  主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

  第二:平面向量和三角函数。

  重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

  第三:数列。

  数列这个板块,重点考两个方面:一个通项;一个是求和。

  第四:空间向量和立体几何。

  在里面重点考察两个方面:一个是证明;一个是计算。

  第五:概率和统计。

  这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

  第六:解析几何。

  这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是20xx年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

  第七:押轴题。

  考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

相关内容
  • 高三数学工作总结(精选10篇)

    09年的这一个学期是忙碌而充满激情的一个学期半年来的风风雨雨让我获益多多。表现的不仅是在教学上,更多的时候是自己的提高上!一、科学备考认真命题本学期我们在上好复习的同时,非常重视每次考试的命题工作为此,我们每一位老师都付出...

  • 高三数学工作总结(精选14篇)

    李茂平高三教学事关重大,如何在教学中找到一些更贴近学生实际且有利于提高教学与复习的好方法。我在老教师的悉心指导下,在本期的教学中结合我的教学,我有一些不成熟的心得,先总结如下:1、重视基础知识的复习,切实夯实基础面对不断变...

  • 2025高三数学工作总结(通用13篇)

    一、备考具体措施(成功之处):1、充分利用理科数学备课组的人员和资源优势,进行集体备课,提高了复习备考质量和效率高三文科组只有3位老师,负责6个班,准确把握复习方向、收集信息、准备讲义、练习和试题,及时改卷及分析等任务重,就...

  • 最新高三数学教学总结范文(通用8篇)

    一、加强备课,优化课堂教学新的高考形势下,高三数学怎么去教,学生怎么去学?无论是教师还是学生都感到压力很大,针对这一问题制定了严密的教学计划,提出了优化课堂教学,强化备课,培养学生素质的具体要求。...

  • 数学年度工作总结(通用14篇)

    在我的意识里,一直认为自己是一名普通而平凡的教师,没有显赫的战功,没有骄人的业绩,只是在xx小学这块沃土上默默地耕耘着。如果说有什么追求或目标的话,那就是努力要求自己能成为一名学生喜爱、家长尊重、同事信任、领导放心的“好教...

  • 数学考试总结范例600字(精选13篇)

    期末考试完了,我听到了一件事我的数学很差,我的三好学生拿不到了。我连忙看看我的.英语和语文都是九十几分,那时我很难过。可是曹老师跟我说:“佳怡,你不要灰心,这次没考好没系。放寒假后买一些学数学知识的书,好好复习数学知识。...

  • 半期总结数学500字(精选5篇)

    今天早上,妈妈提出去紫荆山公园,我非常高兴,一蹦三尺高,恨不得变成超人,拉着妈妈一起飞到紫荆山公园!爸爸把我们送到紫荆山公园,但不肯让我没问你下车,爸爸又神秘兮兮地对我们说:“答对问题才能下车,”爸爸得意洋洋的对我们说:“...

  • 数学研修总结(精选16篇)

    远程教育培训学习即将结束,我们的心中除了不舍还是不舍,是远程研修平台拉近了我们鹿寨初中数学教育工作者的距离。远程研修平台,我们感谢你,因为有你,我们才有了倾诉困惑的最佳场所;因为有你,我们才有展示自我的最佳舞台;因为有你...

  • 数学活动总结(精选12篇)

    本活动以故事开始导入,能充分引起幼儿兴趣,借助帮小熊分饼开始幼儿动手尝试为圆形二等分,当幼儿在展示帮助成果中老师帮助梳理,把圆形对折,然后剪成大小一样的两份,就叫二等分,幼儿初次接触“二等分”这个概念。...

  • 月考数学总结(精选14篇)

    一、回归课本,落实三基。对进行分析不难发现,高题中有相当一部分是对基本知识、基本技能、基本的考查,考题往往是对课本原题的变形、改造及综合。...

  • 数学月考分析总结(精选14篇)

    各位领导老师下午好:本次考试时间:120分钟,分值:120分。全卷分为选择题、填空题、以及解答题三个部分,选择题12题36分、填空题6题18分,解答题占66分。...

  • 数学知识点总结(通用15篇)

    全套教科书包含了课程标准(实验稿)规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。...

  • 数学考试总结(通用11篇)

    一、回归课本,落实三基。对高考试卷进行分析不难发现,高考试题中有相当一部分试题是对基本知识、基本技能、基本方法的考查,考题往往是对课本原题的变形、改造及综合。...

  • 数学必修五知识点总结(精选10篇)

    数列1、数列的定义及数列的通项公式:① an?f(n),数列是定义域为N的函数f(n),当n依次取1,2,???时的一列函数值② i。归纳法若S0?0,则an不分段;若S0?0,则an分段iii。...