首页 > 工作总结 > 高一数学组工作总结(精选5篇)

高一数学组工作总结

时间:2025-04-16

高一数学组工作总结 篇1

  本学期我们高一数学组在学校领导和年级组领导的带领下,认真贯彻落实课改精神,以教法探索为重点,努力创建“高效课堂”。在敬业奉献中圆满完成了一学期的工作,现将本学期开展主要活动的情况进行总结:

  一、我们是一个团结奋进的集体,各位老师都能发扬吃苦耐劳敬业奉献的精神,发扬自己在教学中的优势,勇于创新,善于学习,互帮互助。

  二、每周四下午开展高效学科组活动,全体组员齐参与。

  (1)“数学概念教学”的研讨:

  高一新生在“函数概念”的学习上带着恐惧的心理,想学好又怕学不好,因此,我们以这个为开头,对“概念的形成”、“概念的同化”经行了系统的研讨,并且对合适某个类型的'课程,让各位教师试着用“概念形成”或者“概念同化”的模式行进教学,并且鼓励各位老师互相听课学习,撰写相应的教学设计,取得了良好的效果。

  (2)“如何进行有效的课堂提问”的研讨:

  不论是刚上课的青年教师,还是有很多年教学经验的老教师,在教学中都面临一个很重要的问题,那就是“如何进行有效的课堂提问”,就这个问题,我们专门利用学科组活动,学习了“桑德斯依据布鲁姆的认知过程提出问题分类体系:知识型问题,理解型问题,运用型问题,分析型问题,综合型问题,评价型问题”。同时,每个老师就自己在教学中遇到的问题如何设问,如何评价经行了交流。大家都更深刻的了解了有效提问的重要性和必要性。

  (3)对“如何写教学反思”进行了研讨。

  撰写教学反思是每个教师成长过程中最重要的一项“作业”,但是,如何去写教学反思,却不是每个老师都清楚什么是教学反思,怎么写教学反思,如何写教学反思才能提高自己的业务水平而不是流于形式。

  (4)本学期学科组每一位老师都上一节公开课,老师们能在备课、观课、议课、评课等环节求真务实,不断锤炼教学技艺,提高老师们教学水平。

  (5)认真落实课题研究。

  三、工作中的问题:

  在工作中我们还有很多共同的问题:内容多与课时数有限的矛盾;教学中教与学环节上的衔接,周四教研活动质量等等,都是有待于我们进一步解决的问题。

高一数学组工作总结 篇2

  立体几何初步

  柱、锥、台、球的结构特征

  棱柱

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  棱台

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  圆柱

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  圆锥

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  圆台

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  球体

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  NO.2空间几何体的三视图

  定义三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的'高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  NO.3空间几何体的直观图——斜二测画法

  斜二测画法

  斜二测画法特点

  ①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  直线与方程

  直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  直线的斜率

  定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  过两点的直线的斜率公式:

  (注意下面四点)

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  幂函数

  定义

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  性质

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

高一数学组工作总结 篇3

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的性质

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

高一数学组工作总结 篇4

  1、高一数学知识点总结:集合一、集合有关概念

  1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上最高的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N或N+整数集Z有理数集Q实数集R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的元素的公共属性描述出来,写在大

  括号内表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}

  4)Venn图:

  4、集合的分类:

  (1)有限集含有有限个元素的集合

  (2)无限集含有无限个元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  2、高一数学知识点总结:集合间的基本关系

  1.“包含”关系—子集

  注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2

  -1=0}B={-1,1}“元素相同则两集合相等”即:

  ①任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果A?B,B?C,那么A?C

  ④如果A?B同时B?A那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n个元素的集合,含有2n个子集,2n-1个真子集,一般我们把不含任何元素的集合叫做空集。

高一数学组工作总结 篇5

  一、函数的概念与表示

  1、映射

  (1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。

  注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

  2、函数

  构成函数概念的三要素

  ①定义域②对应法则③值域

  两个函数是同一个函数的条件:三要素有两个相同

  二、函数的解析式与定义域

  1、求函数定义域的主要依据:

  (1)分式的分母不为零;

  (2)偶次方根的被开方数不小于零,零取零次方没有意义;

  (3)对数函数的真数必须大于零;

  (4)指数函数和对数函数的底数必须大于零且不等于1;

  三、函数的值域

  1求函数值域的方法

  ①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

  ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

  ③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;

  ④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

  ⑤单调性法:利用函数的单调性求值域;

  ⑥图象法:二次函数必画草图求其值域;

  ⑦利用对号函数

  ⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

  四.函数的奇偶性

  1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

  如果对于任意∈A,都有,则称y=f(x)为奇

  函数。

  2.性质:

  ①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,

  ②若函数f(x)的定义域关于原点对称,则f(0)=0

  ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]

  3.奇偶性的判断

  ①看定义域是否关于原点对称②看f(x)与f(-x)的关系

  五、函数的单调性

  1、函数单调性的定义:

  2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

相关内容
  • 人教版高一数学必修一知识点归纳最新(精选15篇)

    I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函...

  • 高一数学必修1知识点总结(精选17篇)

    集合的运算运算类型交 集并 集补 集定义域 R定义域 R值域>0值域>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上...

  • 高一数学知识点总结汇总(通用15篇)

    (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2)指数函数的值域为大于0的实数集合。(3)函数图形都是下凹的。...

  • 高一数学知识点总结(精选14篇)

    一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。...

  • 高一数学期中考试总结(精选5篇)

    高一数学期中考试按事先约定的计划已圆满地结束了。从考试的结果看与事前想法基本吻合。考试前让学生做的一些事情从成绩上看都或多或少有了一定的效果。现将考前考后的一些东西总结。...

  • 高一数学工作总结(通用11篇)

    本学期根据学校教导处计划,结合本学期数学组的工作计划,本组教师认真完成学校的各项工作认真学习学校的有关要求,认真履行备课组长与教师的职责,加强学科的理论学习,使数学组成为团结和谐、勤奋、互助合作能力较强的数学组。...

  • 高一数学工作总结(通用12篇)

    一、授人以鱼,不如授人以渔古人云:“授人以鱼,不如授人以渔。”也就是说,教师不仅要教学生学会,而且更重要的是要学生会学,这是二十一世纪现代素质教育的要求。...

  • 高一数学月考总结(通用15篇)

    开学一个多月了,10月9日进行了七年级数学月考,考试批阅后,感觉无论是课堂教学效果还是学生的学习成绩都不容乐观。尤其是在本次月考考试中,暴露出学生对计算题掌握不牢,练习不够,运用知识点十分不熟练,思维缺乏想象能力和创造性。...

  • 高一数学必修一知识点总结(精选13篇)

    集合的运算运算类型交 集并 集补 集定义域 R定义域 R值域>0值域>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上...

  • 2025高一数学工作总结(精选15篇)

    为了丰富校园文化生活,激发学生学习数学的兴趣,培养学生学习数学、应用数学知识点的能力,展示学生在数学学科学习中的成果,特举行20xx年上学期高一数学知识竞赛活动,本次数学竞赛是在教务处、年级组的领导下,数学组的组织下开展的一...

  • 2025高一数学教学工作总结(精选18篇)

    时间过的真快,转眼间高一上学期的工作就结束了。 回想起这学期的工作,我感受颇多。当然经验谈不上,我只想和大家一起交流一下这学期工作心的体会,有不妥之处希望各位老师批评指正。...

  • 高一数学教学工作总结范文(通用18篇)

    时间过得真快,转眼间高一上学期的工作就结束了。我要非常感谢学校的领导和高一年级的全体老师对我工作的大力支持和帮助,特别要感谢我们高一数学备课组的各位老师,特别是我的指导老师姚源信老师。...

  • 最新高一数学教学工作总结(精选13篇)

    本学期我担任高一(4)、(6)两班的数学教学。本学期教学主要资料有:集合与函数的概念,基本初等函数:指数函数、对数函数,现将本学期教学总结如下:一、教学方面1、认真研究课程标准。...