高考数学知识点归纳总结 篇1
求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
函数零点定理使用不当致误
错因分析:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B的必要条件,B是A的充分条件;如果AB,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
高考数学知识点归纳总结 篇2
1、课程内容:
必修课程由5个模块组成:
必修1:集合、函数概念与基本初等函数(指、对、幂函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
2、重难点及考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
难点:函数、圆锥曲线
高考相关考点:
⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件
⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用
⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用
⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用
⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用
⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用
⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用
⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布
⑿导数:导数的概念、求导、导数的应用
⒀复数:复数的概念与运算
高考数学知识点归纳总结 篇3
由于空集是任何非空集合的真子集,因此B=?时也满足B?A。解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
充分条件、必要条件颠倒致误
对于两个条件A,B,如果A?B成立,则A是B的充分条件,B是A的`必要条件;如果B?A成立,则A是B的必要条件,B是A的充分条件;如果A?B,则A,B互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
“或”“且”“非”理解不准致误
命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假)。求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
向量夹角范围不清致误
解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
an与Sn关系不清致误
在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2。这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
对数列的定义、性质理解错误
等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差数列。
数列中的最值错误
数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题。数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定。
错位相减求和项处理不当致误
错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理。
不等式性质应用不当致误
在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误。
忽视基本不等式应用条件致误
利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件。对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的'符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到。
高考数学知识点归纳总结 篇4
一、集合与函数
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法
11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?
①比较函数值的大小;
②解抽象函数不等式;
③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
二、不等式
1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
2.绝对值不等式的解法及其几何意义是什么?
3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
6. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a
三、数列
1.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
2.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
3.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
4.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
5.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
四、三角函数
1.正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
2.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
3. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
4. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。 异角化同角,异名化同名,高次化低次)
5. 反正弦、反余弦、反正切函数的取值范围分别是
6.你还记得某些特殊角的三角函数值吗?
7.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
五、平面向量
1..数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
2..数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。
已知实数,且,则a=c,但在向量的数量积中没有。
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。
3.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
六、解析几何
1.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
2.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
3.直线的倾斜角、到的角、与的夹角的取值范围依次是。
4. 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?
5. 对不重合的两条直线
(建议在解题时,讨论后利用斜率和截距)
6. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
7.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。
①设出变量,写出目标函数
②写出线性约束条件
③画出可行域
④作出目标函数对应的系列平行线,找到并求出最优解
8.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
9.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
10.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
11. 通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
12. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).
13.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
七、立体几何
1.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
2.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
3.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
4.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。
5.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
6.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
7.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
8. 两条异面直线所成的角的范围:0°<α≤90°< p="">
直线与平面所成的角的范围:0o≤α≤90°
高考数学知识点归纳总结 篇5
圆与圆的位置关系的判断方法
一、设两个圆的半径为R和r,圆心距为d。
则有以下五种关系:
1、d>R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。
2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。
3、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。
4、d<r—rp=""两圆内含;两圆的圆心距离之和小于两圆的半径之差。
5、d<r+rp=""两园相交;两圆的圆心距离之和小于两圆的半径之和。
二、圆和圆的位置关系,还可用有无公共点来判断:
1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
高考数学知识点归纳总结 篇6
一.知识归纳:
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N.
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)补集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,则? A ;
②若, ,则 ;
③若且 ,则A=B(等集)
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与 的区别。
4.有关子集的几个等价关系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
高考数学知识点归纳总结 篇7
1、直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
2、直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
高考数学知识点归纳总结 篇8
一、集合有关概念
1. 集合的含义
2. 集合的中元素的三个特性:
(1) 元素的确定性,
(2) 元素的互异性,
(3) 元素的无序性,
3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(2) 集合的表示方法:列举法与描述法。
? 注意:常用数集及其记法:
非负整数集(即自然数集) 记作:N
正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R
1) 列举法:{a,b,c……}
2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 语言描述法:例:{不是直角三角形的三角形}
4) Venn图:
4、集合的分类:
(1) 有限集 含有有限个元素的集合
(2) 无限集 含有无限个元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同时 B?A 那么A=B
3. 不含任何元素的集合叫做空集,记为
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n个元素的集合,含有2n个子集,2n-1个真子集
三、集合的运算
运算类型 交 集 并 集 补 集
定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).
设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
高考数学知识点归纳总结 篇9
等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:
(1)a>bb
(2)a>b,b>ca>c(传递性)
(3)a>ba+c>b+c(c∈R)
(4)c>0时,a>bac>bc
cbac
运算性质有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:
(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
高考数学知识点归纳总结 篇10
一学年来,在学校领导、高三年级组的领导下,高三数学备课组按照学年初制定的复习备考计划加以实施,并适时地加以充实和完善。全组成员,同心协力,废寝忘食地勤奋工作,并积极进行教学改革,悉心研讨和实践旨在如何最大限度的调动学生复习主动性,充分发挥学生的主体作用的教学模式和措施。经过实验,效果良好,以往的“学生被动的接受”的状况得到了改观,出现了“学生主动参与、主动思考和主动学习”的新局面,学生的创新意识和应用能力得到加强和提高,复习效率和质量也大大提高。使今年我校高考数学成绩再上新台阶,我校今年高考数学最高分145分,高分人数理科110多人文科48人,取得了较好的成绩。成绩的取得,源于各方面的因素,现总结如下:
一、系统、扎实、科学、创新的复习备考
1、研讨考纲,分析考点,设置梯度。高三备课组组织教师研讨高考考试说明,明确各章节知识的考点分布及其要求层次,在复习过程中根据我校大部分学生的基础和智力都比其它几所高中差的现状,狠抓对基础知识的复习,再结合知识本身的重点、难点,设置好复习题的梯度和难度。做到有的放矢,尽可能减少无效劳动。
2、团结协作,发挥特长。备课组坚持集体备课,精心设计复习教学方案,统一教学目标、要求及复习的大致进度,理清各章节内容的知识网络及其交汇点(因高考常在知识网络交汇点上命题),准确把握各复习内容的重点和难点,疑难问题集体讨论,老师们各抒己见,找出最佳解决办法,充分发挥了备课组的集体智慧。
3、回归课本,狠抓基础,开拓创新。备课组以课本知识点为出发点,狠抓对“三基”的落实,并选好一本主干复习资料和套题,(第一阶段用《中华第一考》和《状元之路测试卷》,第二阶段和套题用的是《全品、夯实基础、短平快》),以自编资料为主,但又不过分依赖复习资料,对资料中过时、过偏、过难的内容,我们进行了大胆舍弃,同时,教师把富有新意、能启迪思维、体现重要数学思想方法、反映时代气息的习题及时补充进去,另外,老师自己也改编了一些题,重视单元小综合,适当自编或改编知识网络交汇点上的题目,这些自编题、自造题的应用,对于培养学生的发散思维,使学生们加深对各部分知识的内在联系的认识,因而从中感悟出数学的真谛,最终收到了相当好的效果。
4、拓宽课堂教学渠道,全面提高学生能力。课堂教学是提高教学质量的关键环节,因此,在如何提高课堂复习效率和复习质量方面,几个老师都作了积极的探索和试验,进行了大胆教学改革。胡景云老师试验的自主复习指导法,经过一学年的实验证明,效果显著;王从志、杨晓琴、等老师的加大课堂练习容量,以学生练为主,老师的点评为辅的实验,也取得不同程度的效果。在教学中我们注意发挥教师的主导作用和创新意识,在传授知识的同时,指导学法,发展智力,培养能力,并适时地渗透重要的数学思想方法。教学中着力体现学生的主体作用,努力提高学生的主动参与意识,激发他们积极思维,挖掘其潜能和非智力因素,使他们养成独立思考、勇于探索、善于反思、勤于积累、不断创新的好习惯。大家都认识到,只有把学生的学习积极性充分调动起来了,养成了良好的学习习惯和思维品质,高考复习的质量才有保证。因为内因是决定因素,外因必须通过内因才能起作用。
5、滚动测练、螺旋式上升。高三备课组老师在备课组组长的带领下,分工轮流做好数学每天限时训练、每周一练、单元过关测验、综合训练题、模拟考试试题的命题和制卷工作,把好质量关。通过滚动练习、限时训练和模拟考试使学生逐步增强速度意识、质量意识,提高了学生的运算能力、逻辑思维能力、空间想象能力和综合运用知识的能力,为高考作了较充分的准备。
6、互听互学,扬长避短。为提高复习质量,备课组老师之间经常相互听课。通过听课,相互学习,取他人之长,补己之短。提高了教学水平和复习效果。
7、勤字为首,真情感化。晚自习下班辅导工作抓得紧,做到常下班、常辅导,不仅辅导本学科知识,还有针对性地找学生谈心,勾通了思想,联络了感情,也消除他们的心理障碍。王从志、杨晓琴等老师坚持每晚下班辅导至少一节,其他教师也纷纷仿效,不少老师一直辅导到学校要求最后熄灯的十一点为止。高考前还在时时寄语高三学生,指导答题技巧,以及如何调整好心理状态,做到轻装上阵。
8、认真反馈,不断改进。做好本备课组教学情况的收集、反馈工作,各个老师自觉根据各班教学情况进行了学生评教活动,对帮助科任教师改进不足之处,提高教学水平起到了一定的促进作用。
9、培养“尖子”、诊治“拐子”。做好单科尖子学生的培养和鼓励工作,各科任教师根据几次模拟考试成绩确定出各班尖子生名单,及时找他们谈心,并加以指导和鼓励。根据班级的.跟踪对象,大部分尖子的成绩较稳定。同时也主动配合级组、班级抓好临界生、“拐子”生的辅导工作。
二、备课组浓厚的高考研究气氛
随着高考改革力度的加大,高考更加突出对各种数学能力与素质、潜能的考查,因此,要提高高考成绩,必须走教科研之路。
1、集体研讨,团结攻坚。高三备课组教师和其他有丰富高考指导经验的教师结成对子。充分发挥非高三任课教师的其他成员的作用,先后请他们参加了若干次高三数学备课组活动,重点对近几年来的高考试题进行了深入的研究和探讨。并为我们献计献策,使我们的高考备考少走了弯路,复习更具有针对性。
2、中心开花,备课组每周组织一次集研活动,设置中心问题,每个教师畅所欲言,然后各个击破。由于高考是高三全年的攻坚战,因此备课组的活动始终围绕高考备考这个中心进行。我们分阶段研讨中心问题如下:
1)如何处理好复习课中教师讲解与学生练习的时间比例及矛盾。
2)复习课中如何激发学生的兴趣和挖掘学生的潜能?
3)今年高考重点、热点预测和研讨。
4)如何精选高考复习题,它应遵循什么原则?
5)如何命制高考模拟题,它的选题原则是什么?
6)如何上好第二轮专题复习课。
7)如何克服高三学生常犯的“眼高手低”的坏毛病?
8)强化训练阶段,如何渗透和强化各种数学思想和方法?
9)高考应用题数学模型的建立的探讨;
3、促使学生突变,创设突变机遇。我们认为:学生在第二、三阶段是数学成绩提高的良好阶段,教师在这两阶段的课堂教学是帮助学生“归纳提高”的导航。因此,我们认真做好第二、三阶段复习的研讨工作,王从志、杨晓琴老师分别承担了的第二、三阶段高考复习研讨观摩课,准备充分,具有观摩性和示范性,为学生知识归类提高设置了明确的航标。
4、采集信息,科学巧干。备课组注意采集各地高考备考及高考命题方面信息,通过去伪存真,及时加工,科学地复习提高,为高考赢得时间,也做到有的放矢。这方面吴家强、陈云、杨斌等老师做了大量的工作。
总之,因为有上级领导、学校行政、教务处、数学组、高三年级组的正确领导,有全备课组老师的勤奋工作,还有其他老师的大力支持和学生的奋力拼搏,才使我校今年数学高考成绩再上新台阶,再创新辉煌。
尽管今年我们取得了较好的成绩,积累了一些成功经验,但仍有许多不足和遗憾:
1、各班学生成绩参差不齐,这给我们在教学上带来一定的困难,例如,到底应该以哪一层学生为主攻对象更合适、更科学?因为现在录取率这么高,怕甩掉了不该甩的学生,同时若只照顾优生,差生也有意见,真是左右为难。
2、各班之间的发展还不够平衡,各班的成绩差距较大;
3、各科之间的协调还不够,治“拐”力度不够。如有些学生数学成绩上了重点线,但其它科却没有上,或者是其它科上了重点线,而数学又没有上。
4、对尖子生的培养措施和力度还不够。
5、对差生的学习积极性还没有完全调动起来,对其非智力因素挖掘得不够,练习还不够到位,没有形成应有的能力,故这部分学生的高考成绩不够理想。
6、老师有时讲得过多,包得过多的教法还需进一步改进。
高考数学知识点归纳总结 篇11
空间几何。三视图和直观图的绘制不算难。但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物。这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推。有必要的还要在做题时结合草图,不能单凭想象。后面的锥体柱体台体的表面积和体积,把公式记牢问题就不大。做题表求表面积时注意好到底有几个面,到底有没有上下底这类问题就可以。
点、直线、平面之间的位置关系。这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生要多看图,自己画草图的时候要严格注意好实线虚线,这是个规范性问题。关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,难度在于对这个概念无法理解,即知道有这个概念,但就是无法在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。
直线与方程。这一章主要讲斜率与直线的位置关系。只要搞清楚直线平行、垂直的斜率表示问题就不大了。需要格外注意的是当直线垂直时斜率不存在的情况,这是常考点。另外直线方程的几种形式,记得一般公式会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,记住公式,直接套用。
圆与方程。能熟练的把一般式方程转化为标准方程,通常的考试形式是等式的一遍含根号,另一边不含,这时就要注意开方后定义域或值域的限制;通过点到点的距离、点到直线的距离与圆半径的大小关系判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交直线的多种情况,这也是常考点。
高考数学知识点归纳总结 篇12
向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=—b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c。
注:向量没有除法,“向量AB/向量CD”是没有意义的。
高考数学知识点归纳总结 篇13
1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
高考数学知识点归纳总结 篇14
掌握每一个公式定理
做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。
做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。
进行专题训练提高数学成绩
1、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
2、错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。
3、如何学好高中数学
1)先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
2)做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。
3)主动复习总结提高。进行章节总结是非常重要的。初中时是教师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。
高考数学知识点归纳总结 篇15
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型。
古典概型的概率:
如果一次试验的等可能事件有n个,考试技巧,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。
高考数学知识点归纳总结 篇16
一、充分条件和必要条件
当命题“若A则B”为真时,A称为B的充分条件,B称为A的`必要条件。
二、充分条件、必要条件的常用判断法
1、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
2、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3、集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
若A?B,则p是q的充分条件。
若A?B,则p是q的必要条件。
若A=B,则p是q的充要条件。
若A?B,且B?A,则p是q的既不充分也不必要条件。
三、知识扩展
1、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2、由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
高考数学知识点归纳总结 篇17
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N.或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的`一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.