首页 > 工作总结 > 人教版高二数学知识点总结(精选14篇)

人教版高二数学知识点总结

时间:2025-04-09

人教版高二数学知识点总结 篇1

  数学概率

  (1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

  (2)通过实例,了解两个互斥事件的概率加法公式。

  (3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

  (4)了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。

  (5)通过阅读材料,了解人类认识随机现象的过程。

人教版高二数学知识点总结 篇2

  1、不等式的定义:a—b>;0a>;b,a—b=0a=b,a—b;bb

  (2)a>;b,b>;ca>;c(传递性)

  (3)a>;ba+c>;b+c(c∈R)

  (4)c>;0时,a>;bac>;bcc;bac

  运算性质有:

  (1)a>;b,c>;da+c>;b+d。

  (2)a>;b>;0,c>;d>;0ac>;bd。

  (3)a>;b>;0an>;bn(n∈N,n>;1)。

  (4)a>;b>;0>;(n∈N,n>;1)。

  应注意,上述性质中,条件与结论的逻辑关系有两种:和即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。

  ②关于不等式的性质的考察,主要有以下三类问题:

  (1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

  (2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

  (3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

人教版高二数学知识点总结 篇3

  1、向量的加法

  向量的加法满足平行四边形法则和三角形法则。

  AB+BC=AC。

  a+b=(x+x,y+y)。

  a+0=0+a=a。

  向量加法的运算律:

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  2、向量的减法

  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

  AB-AC=CB. 即“共同起点,指向被减”

  a=(x,y) b=(x,y) 则 a-b=(x-x,y-y).

  3、数乘向量

  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

  当λ>0时,λa与a同方向;

  当λ1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ0)或反方向(λ0)的图象与零点的关系

  三二分法

  对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

  1、函数的零点不是点:

  函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标。

  2、对函数零点存在的判断中,必须强调:

  (1)、f(x)在[a,b]上连续;

  (2)、f(a)·f(b)<0;

  (3)、在(a,b)内存在零点。

  这是零点存在的一个充分条件,但不必要。

  3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。

  利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点。

  四判断函数零点个数的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,则有几个解就有几个零点。

  2、零点存在性定理法:

  利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

  3、数形结合法:

  转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

  已知函数有零点(方程有根)求参数取值常用的方法

  1、直接法:

  直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

  2、分离参数法:

  先将参数分离,转化成求函数值域问题加以解决。

  3、数形结合法:

  先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

人教版高二数学知识点总结 篇4

  数列

  1、数列的定义及数列的通项公式:

  ① an?f(n),数列是定义域为N

  的函数f(n),当n依次取1,2,???时的一列函数值② i。归纳法

  若S0?0,则an不分段;若S0?0,则an分段iii。若an?1?pan?q,则可设an?1?m?p(an?m)解得m,得等比数列?an?m?

  ?Sn?f(an)

  iv。若Sn?f(an),先求a

  1?得到关于an?1和an的递推关系式

  S?f(a)n?1?n?1?Sn?2an?1

  例如:Sn?2an?1先求a1,再构造方程组:??(下减上)an?1?2an?1?2an

  ?Sn?1?2an?1?1

  2、等差数列:

  ①定义:a

  n?1?an=d(常数),证明数列是等差数列的重要工具。 ②通项d?0时,an为关于n的一次函数;

  d>0时,an为单调递增数列;db>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

  2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

  3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

  4、直线被圆锥曲线截得的弦长公式:

  三、直线、平面、简单几何体:

  1、学会三视图的分析:

  2、斜二测画法应注意的地方:

  (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

  (2)平行于x轴的线段长不变,平行于y轴的线段长减半.

  (3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

  3、表(侧)面积与体积公式:

  (1)柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

  (2)锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

  (3)台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

  (4)球体:①表面积:S=;②体积:V=

  4、位置关系的证明(主要方法):注意立体几何证明的书写

  (1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

  (2)平面与平面平行:①线面平行面面平行。

  (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

  5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

  (1)异面直线所成角的求法:平移法:平移直线,构造三角形;

  (2)直线与平面所成的角:直线与射影所成的角

  四、导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)

  1、导数的定义:在点处的导数记作.

  2、导数的几何物理意义:曲线在点处切线的斜率

  ①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

  3.常见函数的导数公式:①;②;③;

  ⑤;⑥;⑦;⑧。

  4.、导数的四则运算法则:

  5、导数的应用:

  (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

  注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

  (2)求极值的'步骤:

  ①求导数;

  ②求方程的根;

  ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

  (3)求可导函数值与最小值的步骤:

  ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

  五、常用逻辑用语:

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”.

  3、逻辑联结词:

  (1)且(and):命题形式pq;pqpqpqp

  (2)或(or):命题形式pq;真真真真假

  (3)非(not):命题形式p.真假假真假

  假真假真真

  假假假假真

  “或命题”的真假特点是“一真即真,要假全假”;

  “且命题”的真假特点是“一假即假,要真全真”;

  “非命题”的真假特点是“一真一假”

  4、充要条件

  由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

  5、全称命题与特称命题:

  短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

  短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。

人教版高二数学知识点总结 篇5

  集合间的基本关系

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={_2-1=0}B={-1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集

人教版高二数学知识点总结 篇6

  等差数列

  对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。

  那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:

  将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。

  此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在此,不再复述。

  值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。

  等比数列

  对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。

  那么,通项公式为(即a1乘以q的(n—1)次方,其推导为“连乘原理”的思想:

  a2=a1Xq,

  a3=a2Xq,

  a4=a3Xq,

  ````````

  an=an—1Xq,

  将以上(n—1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n—1)个q的乘积,也即得到了所述通项公式。

  此外,当q=1时该数列的前n项和Tn=a1Xn

  当q≠1时该数列前n项的和Tn=a1X(1—q^(n))/(1—q)。

人教版高二数学知识点总结 篇7

  数列知识:数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

  数列

  ①用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

  数列的一般形式可以写成

  a1,a2,a3,…,an,a(n+1),……

  简记为{an},

  项数有限的数列为“有穷数列”(finite sequence),

  项数无限的数列为“无穷数列”(infinite sequence)。

  数列的各项都是正数的为正项数列;

  从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;

  从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1;

  从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;

  各项呈周期性变化的数列叫做周期数列(如三角函数);

  各项相等的数列叫做常数列(如:2,2,2,2,2,2,2,2,2)。

  通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。

  递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

  数列中项的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。

  如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).

  并非所有的数列都能写出它的通项公式。例如:π的不同近似值,根据精确的程度,可形成一个数列3,3.1,3.14,3.141,…它没有通项公式。

  数列中的项必须是数,它可以是实数,也可以是复数。

  用符号{an}表示数列,只不过是“借用”集合的符号,它们之间有本质上的区别:

  1.集合中的元素是互异的,而数列中的项可以是相同的。

  2.集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。

人教版高二数学知识点总结 篇8

  不等关系及不等式知识点

  1.不等式的定义

  在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

  2.比较两个实数的大小

  两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

  3.不等式的性质

  (1)对称性:ab

  (2)传递性:ab,ba

  (3)可加性:aa+cb+c,ab,ca+c

  (4)可乘性:ab,cacb0,c0bd;

  (5)可乘方:a0bn(nN,n

  (6)可开方:a0

  (nN,n2).

  注意:

  一个技巧

  作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

  一种方法

  待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

人教版高二数学知识点总结 篇9

  圆与圆的位置关系

  1、利用平面直角坐标系解决直线与圆的位置关系;

  2、过程与方法

  用坐标法解决几何问题的步骤:

  第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:将代数运算结果“翻译”成几何结论。

人教版高二数学知识点总结 篇10

  高中数学数列知识点总结:等差数列公式

  等差数列的通项公式为:an=a1+(n-1)d

  或an=am+(n-m)d

  前n项和公式为:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2

  若m+n=2p则:am+an=2ap

  以上n均为正整数

  文字翻译

  第n项的值=首项+(项数-1)*公差

  前n项的和=(首项+末项)*项数/2

  公差=后项-前项

  高中数学数列知识点总结:等比数列公式

  等比数列求和公式

  (1) 等比数列:a (n+1)/an=q (n∈N)。

  (2) 通项公式:an=a1×q^(n-1); 推广式:an=am×q^(n-m);

  (3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)

  (4)性质:

  ①若 m、n、p、q∈N,且m+n=p+q,则am×an=ap×aq;

  ②在等比数列中,依次每 k项之和仍成等比数列.

  ③若m、n、q∈N,且m+n=2q,则am×an=aq^2

  (5)"G是a、b的等比中项""G^2=ab(G ≠ 0)".

  (6)在等比数列中,首项a1与公比q都不为零. 注意:上述公式中an表示等比数列的第n项。

  等比数列求和公式推导: Sn=a1+a2+a3+...+an(公比为q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。

人教版高二数学知识点总结 篇11

  1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

  2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

  3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

  4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

  5.常用的排序方法是直接插入排序和冒泡排序.

  6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

  7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

  8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.

人教版高二数学知识点总结 篇12

  空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

  (2)垂直关系的判定和性质定理

  ①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

人教版高二数学知识点总结 篇13

  一、变量间的相关关系

  1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系。

  2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的`这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关。

  二、两个变量的线性相关

  1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线。

  当r>0时,表明两个变量正相关。

  当r<0时,表明两个变量负相关。

  r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性。

  三、解题方法

  1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断。

  2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性。

  3.由相关系数r判断时|r|越趋近于1相关性越强。

人教版高二数学知识点总结 篇14

  1、在中学我们只研直圆柱、直圆锥和直圆台。

  所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。

  这样定义直观形象,便于理解,而且对它们的性质也易推导。

  对于球的定义中,要注意区分球和球面的概念,球是实心的。

  等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。

  2、圆柱、圆锥、圆和球的性质

  (1)圆柱的性质,要强调两点:

  一是连心线垂直圆柱的底面;

  二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。

  (2)圆锥的性质,要强调三点

  ①平行于底面的截面圆的性质:

  截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。

  ②过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:

  易知,截面三角形的顶角不大于轴截面的顶角(如图10—20),事实上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC。

  由于截面三角形的顶角不大于轴截面的顶角。

  所以,当轴截面的顶角θ≤90°,有0°<α≤θ≤90°,即有当轴截面的顶角θ>90°时,轴截面的面积却不是的,这是因为,若90°≤α<θ<180°时,1≥sinα>sinθ>0。

  ③圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式l2=h2+R2

  (3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,高考,但仍要强调下面几点:

  ①圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

  ②平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S,则其中S1和S2分别为上、下底面面积。

  的截面性质的推广。

  ③圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有l2=h2+(R—r)2。

  圆台的有关计算问题,常归结为解这个直角梯形。

  (4)球的性质,着重掌握其截面的性质。

  ①用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。

  ②如果用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的`距离,则R2=r2+d2即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。

相关内容
  • 高二数学期末总结(通用5篇)

    回顾一学期以来的工作情况,感慨良多,现就本学期本人的教学工作总结总结如下:一、政治思想方面认真学习政治理论,全面贯彻党的教育方针,热爱并忠诚于人民的教学事业,教学态度认真,教风扎实,严格遵守学校的规章制度。...

  • 高二数学工作总结(通用12篇)

    高二数学教师工作总结时间过得真快,转眼又过了一学期。这是忙碌的一学期,也是充实的一学期,收获的一学期。这一学期我负责高二(6)、(10)两个班的教学工作。...

  • 数学研修总结(精选16篇)

    远程教育培训学习即将结束,我们的心中除了不舍还是不舍,是远程研修平台拉近了我们鹿寨初中数学教育工作者的距离。远程研修平台,我们感谢你,因为有你,我们才有了倾诉困惑的最佳场所;因为有你,我们才有展示自我的最佳舞台;因为有你...

  • 数学活动总结(精选12篇)

    本活动以故事开始导入,能充分引起幼儿兴趣,借助帮小熊分饼开始幼儿动手尝试为圆形二等分,当幼儿在展示帮助成果中老师帮助梳理,把圆形对折,然后剪成大小一样的两份,就叫二等分,幼儿初次接触“二等分”这个概念。...

  • 月考数学总结(精选14篇)

    一、回归课本,落实三基。对进行分析不难发现,高题中有相当一部分是对基本知识、基本技能、基本的考查,考题往往是对课本原题的变形、改造及综合。...

  • 数学月考分析总结(精选14篇)

    各位领导老师下午好:本次考试时间:120分钟,分值:120分。全卷分为选择题、填空题、以及解答题三个部分,选择题12题36分、填空题6题18分,解答题占66分。...

  • 数学知识点总结(通用15篇)

    全套教科书包含了课程标准(实验稿)规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。...

  • 数学考试总结(通用11篇)

    一、回归课本,落实三基。对高考试卷进行分析不难发现,高考试题中有相当一部分试题是对基本知识、基本技能、基本方法的考查,考题往往是对课本原题的变形、改造及综合。...

  • 数学必修五知识点总结(精选10篇)

    数列1、数列的定义及数列的通项公式:① an?f(n),数列是定义域为N的函数f(n),当n依次取1,2,???时的一列函数值② i。归纳法若S0?0,则an不分段;若S0?0,则an分段iii。...

  • 数学总结(通用11篇)

    数学是一门基础学科,它在我们的日常生活中有着广泛的应用。在学习数学的过程中,我取得了一些经验教训和感悟,在此总结如下:首先,数学是一个需要不断练习的学科。通过多做题,我们可以更好地掌握数学基础知识,提高解题能力。...

  • 数学必修一知识点总结(精选11篇)

    集合的运算运算类型交 集并 集补 集定义域 R定义域 R值域>0值域>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上...

  • 高一期中数学总结(通用7篇)

    一、授人以鱼,不如授人以渔古人云:“授人以鱼,不如授人以渔。”也就是说,教师不仅要教学生学会,而且更重要的是要学生会学。这就需要教师要更新观念,改变教法,把学生看作学习的主人,培养他们自觉阅读,提出问题,释疑归纳的能力。...

  • 数学全部知识点总结(通用5篇)

    一、学习目标:1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;3.理解用字母表示数的意义和作用;4.理解简易方程的...

  • 2025年数学工作总结范文(精选14篇)

    本学期,我担负一年级的数学教学工作。学生刚刚入学,学习习惯还未养成,再加上家庭及学生智力的差异,我努力根据学生的实际情况,采取有效的措施,激起学生的学习爱好,培养学生的学习习惯,引导学生参与学习的全进程,取得了一定效果。...