首页 > 工作总结 > 数学全部知识点总结(通用5篇)

数学全部知识点总结

时间:2025-04-05

数学全部知识点总结 篇1

  一、学习目标:

  1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;

  2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;

  3.理解用字母表示数的意义和作用;

  4.理解简易方程的意思及其解法;

  5.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  二、学习难点:

  1.能正确进行乘号的简写,略写;小数乘法的计算法则;

  2.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;

  3.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;

  4.构建初步的空间想象力;

  5.用字母表示数的意义和作用;

  6.多边形面积的计算。

  三、知识点概念总结:

  1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

  2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

  3.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

  4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

  5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

  6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

  7.数的互化:

  (1)小数化成分数

  原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

  (2)分数化成小数

  用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

  (3)化有限小数

  一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

  (4)小数化成百分数

  只要把小数点向右移动两位,同时在后面添上百分号。

  (5)百分数化成小数

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  (6)分数化成百分数

  通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  (7)百分数化成小数

  先把百分数改写成分数,能约分的要约成最简分数。

  8.小数的分类:

  (1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

  (2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……

  (3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

  (4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。

  9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。

  10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

  11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

  方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

  12.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。如果两个方程的解相同,那么这两个方程叫做同解方程。

  13.方程的同解原理:

  (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

  (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

  14.解方程:解方程,求方程的解的过程叫做解方程。

  15.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。

  16.列方程解答应用题的步骤:

  (1)弄清题意,确定未知数并用x表示;

  (2)找出题中的数量之间的相等关系;

  (3)列方程,解方程;

  (4)检查或验算,写出答案。

  17.列方程解应用题的方法:

  (1)综合法

  先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

  (2)分析法

  先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

  18.列方程解应用题的范围:

  小学范围内常用方程解的应用题:

  (1)一般应用题;

  (2)和倍、差倍问题;

  (3)几何形体的周长、面积、体积计算;

  (4)分数、百分数应用题;

  (5)比和比例应用题。

  19.平行四边形的面积公式:

  底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah

  20.三角形面积公式:

  S△=1/2_ah(a是三角形的底,h是底所对应的高)

  21.梯形面积公式:

  (1)梯形的面积公式:(上底+下底)×高÷2.

  用字母表示:(a+b)×h÷2

  (2)另一计算公式:中位线×高

  用字母表示:l·h

  (3)对角线互相垂直的梯形:对角线×对角线÷2.

数学全部知识点总结 篇2

  第一单元 小数乘法

  1.小数乘整数:意义——求几个相同加数的和的简便运算。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  2.小数乘小数:意义——就是求这个数的几分之几是多少。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

  3.求近似数的方法一般有三种:

  ⑴四舍五入法;

  ⑵进一法;

  ⑶去尾法

  4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

  5.小数四则运算顺序跟整数是一样的。

  6.运算定律和性质: 加法:

  加法交换律:a+b=b+a

  加法结合律:(a+b)+c=a+(b+c)

  减法: 减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

  乘法: 乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c

  除法: 除法性质:a÷b÷c=a÷(b×c)

  7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

  9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

  10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点

  11.除法中的变化规律:

  ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

  ②除数不变,被除数扩大,商随着扩大。

  ③被除数不变,除数缩小,商扩大。

  12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32。

  13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

  14.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

  15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

  16.a×a可以写作a?a或a2,读作a的平方。 2a表示a+a。

  17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

  18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

  19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商。

  20.所有的方程都是等式,但等式不一定都是等式。

  21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

  22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。

  23.三角形面积公式推导:旋转 两个完全一样的三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2

  24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

  25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。

  26.长方形框架拉成平行四边形,周长不变,面积变小。

  27.组合图形:转化成已学的简单图形,通过加、减进行计算。

  28.平均数=总数量÷总份数

  29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

  30.数不仅可以用来表示数量和顺序,还可以用来编码。

  31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局

  32.身份证号:位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。

数学全部知识点总结 篇3

  一、图形的变换。

  1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  2、成轴对称图形的特征和性质:

  ①对称点到对称轴的距离相等;

  ②对称点的连线与对称轴垂直;

  ③对称轴两边的图形大小形状完全相同。

  3、物体旋转时应抓住三点:

  ①旋转中心;

  ②旋转方向;

  ③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

  二、因数与倍数

  1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

  2、一个数的因数的求法:一个数的因数的个数是有限的,最小的`是1,最大的是它本身,方法是成对地按顺序找。

  3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。

  4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

  6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。

  三、长方体和正方体

  1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

  2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  3、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×12

  4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

  5、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×2

  正方体的表面积=棱长×棱长×6用字母表示:S=

  6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为100

  7、体积:物体所占空间的大小叫做物体的体积。

  8、长方体的体积=长×宽×高用字母表示:V=abh长=体积÷(宽×高)宽=体积÷(长×高)

  高=体积÷(长×宽)

  正方体的体积=棱长×棱长×棱长用字母表示:V=a×a×a

  9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为1000

  10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高V=Sh

  11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;

  把低级单位聚成高级单位,用低级单位数除以进率。

数学全部知识点总结 篇4

  一、同余的定义:

  ①若两个整数a、b除以的余数相同,则称a、b对于模同余。

  ②已知三个整数a、b、,如果|a-b,就称a、b对于模同余,记作a≡b(d ),读作a同余于b模。

  二、同余的性质:

  ①自身性:a≡a(d );

  ②对称性:若a≡b(d ),则b≡a(d );

  ③传递性:若a≡b(d ),b≡c(d ),则a≡ c(d );

  ④和差性:若a≡b(d ),c≡d(d ),则a+c≡b+d(d ),a-c≡b-d(d );

  ⑤相乘性:若a≡ b(d ),c≡d(d ),则a×c≡ b×d(d );

  ⑥乘方性:若a≡b(d ),则an≡bn(d );

  ⑦同倍性:若a≡ b(d ),整数c,则a×c≡ b×c(d ×c);

  三、关于乘方的预备知识:

  ①若A=a×b,则MA=Ma×b=(Ma)b

  ②若B=c+d则MB=Mc+d=Mc×Md

  四、被3、9、11除后的余数特征:

  ①一个自然数M,n表示M的各个数位上数字的和,则M≡n(d 9)或(d 3);

  ②一个自然数M,X表示M的各个奇数位上数字的和,表示M的各个偶数数位上数字的和,则M≡-X或M≡11-(X-)(d 11);

  五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(d p)。

数学全部知识点总结 篇5

  数学活动课,是数学知识与实践活动相互结合、相互渗透的一种新型教学形式,也可以说是学校教学和课堂教学的延伸。其中,数学活动既是目的,又是手段,既是手段,又是目的。

  也就是手段和目的的统一体,两者不可分割。实践活动起到了传播数学知识,强化数学能力,践行数学理念的作用,它既可以激发学生学习数学的兴趣,又能启发学生去提出问题,观察问题,解决问题,从而达到学以致用的目的。而数学,则为相应的实践活动提供了必要的知识。正因为数学活动具有如此的重要性,我将数学活动课引入校本实践课程,通过丰富的活动课的内容,引入一些具体的实例,感染学生的数学思想,培养学生的创新意识,发展学生的创新能力。下面,我把数学活动课校本实践活动工作总结如下:

  一、培养学生的创新意识,发展学生的创新能力

  数学活动课,重在培养学生的创新意识,发展学生的创新能力。一位哲人曾经说过这么一句话,“因为每一片树叶都不同于其它任何一片树叶,所以,对于每一片树叶而言,其本身就是创新。”正是有了这一理由的支持,在进行数学活动课的过程中,我努力保护每一个学生发现的每一个不同于他人的发现,予以肯定、鼓励和支持。比如在“快乐的郊游”活动中时,同学们的创新能力就很强,提出了不少问题和解决方案。当然,也有一部分同学所提问题和解决方案并不完全符合要求,或者说他们的方案尚有欠缺,但是,在一开始,我没有否定他们,而是先鼓励他们这种敢于创新的意识和行为,然后支持他们完善自己的想法,从而达到真正意义的创新。

  二、通过具体事例让学生感染数学思想

  数学活动课的一个很重要的特点就是渗透性,所谓渗透,指让学生通过具体的事例和操作来感染数学思想,来体会数学方法,来应用数学技能。故而,我在设计和布置活动的主题时,在很大程度上侧重于实践性,动手性,渗透性。在进行《节约用水》活动时,我要求学生细心观察生活,从实际生活中去发现问题、提出问题,并努力解决问题,最后组织学生在活动课上汇报交流自己的方法和过程,以及自己在这次实践活动中的收获。将具体的生活实例和数学方法、数学思想整合起来,让学生在动手与动脑中感悟数学,应用数学。

  三、丰富活动课的内容,增强活动课的灵活性。

  数学活动课的内容应该涉及到广泛的领域,具有很强的灵活性,它可以没有严密的知识体系,但一定要有利于学生丰富知识,发展能力,陶冶情操。

  当数学实践活动课有了丰富多彩的内容时,它的形式就一定会灵活多样。在安排数学活动课的内容时,我尽可能多地安排一些学生可以通过眼睛去看、双手去摸、去做,通过大脑去想的实践活动。如让学生调查自己家的开支情况,在家长的指导下,尝试当一于的小管家,启发学生学会节约,学会珍惜;让学生动手剪七巧板,摆七巧板,摸摸几何图形,培养学生对图形的感知能力……丰富灵活的活动内容,调动了学生的各种感官去参与活动,从而激发了学生的学习兴趣,增强他们学习的积极性。

  从整体上来说,这学期自己的数学活动课是成功的,但其中也不乏有不完善的地方,如通过实践活动培养学生的情感、态度与价值观的技巧欠缺,由于时间关系,没有很好地与学生互动等。我想,只要自己再接再厉,在以后的工作当中,自己会有能力解决这些问题的。

相关内容
  • 2025年数学工作总结范文(精选14篇)

    本学期,我担负一年级的数学教学工作。学生刚刚入学,学习习惯还未养成,再加上家庭及学生智力的差异,我努力根据学生的实际情况,采取有效的措施,激起学生的学习爱好,培养学生的学习习惯,引导学生参与学习的全进程,取得了一定效果。...

  • 八上数学知识点总结(精选6篇)

    第十一章三角形一、知识框架:知识概念:1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。...

  • 数学考试分析总结(精选5篇)

    一、努力提高课的质量,追求复习的最大效益1、认真学习新课改的考试说明和考试纲要,严格执行课程计划,确保教学进度的严肃性、高三年级在明确学期教学计划的基础上,本学期以来经常进行备课组群众备课,教学案一体化,将长计划和短安排有...

  • 数学课总结(精选5篇)

    今天的数学课中讲了第八单元,解决问题,在反思中总结,在总结中成长。这部分内容是整册书的重点,也是难点,因为我们学习数学的目的就是运用数学知识来解决生活中的实际问题。...

  • 数学个人工作总结(精选10篇)

    1.认真备课。上好一节课的关键是备好课。备课时,我结合教材的内容和学生的实际,精心设计每一堂课的教学过程,不但要考虑知识的相互联系,而且拟定采用的教学方法,以及各教学环节的自然衔接;既要突出本节课的难点,又要突破本节课的重点...

  • 数学工作总结模板(通用10篇)

    自主学习能力则是指学习者在学习活动中表现出来的一种综合能力。具备这种能力的人具有强烈的求知欲,能够合理地安排自己的学习活动,具有刻苦钻研精神,并且能够对自己的学习效果进行科学的评价。...

  • 数学听课总结(精选5篇)

    非常高兴能够参与今年的规范课达标活动,感谢王主任给我一次这么好的学习机会。通过这次活动自己感觉真的收获很多,对我们小学数学的各种课型有了更深入的理解。...

  • 数学工作总结(精选11篇)

    时光流逝,一个紧张、充实、有序、奋进的学期即将结束了,回顾这一学期我校的数学教学工作,我们深感欣慰,因为我们又取得了许多可喜的成绩。这是全体老师积极转变教学观念,开拓进取、大胆创新、勇于实践、共同努力、互相协作的结果。...

  • 数学工作总结(精选15篇)

    20xx年x月x日不管你愿不愿意,20xx年都已经过去,20xx年也已经悄然到来,本学期的工作即将结束,100多个日子里,经历了不少事情,伫立回首,不免有颇多感慨。...

  • 数学工作总结范文(精选15篇)

    本学期我继续担任三年级数学教学工作。一学期来我努力根据学生的实际情景,采取有效的措施,激发学生的学习兴趣,培养学生的学习习惯,引导学生参与学习的全过程,取得了必须效果。...

  • 数学工作经验总结(精选12篇)

    本学年我担任一年级(2)班的数学教学工作,作为刚接触一年级数学的教师,深深地感受到了肩上的责任之重大。由于我的低年级教学经验尚浅,因此,我对教学工作不敢怠慢,认真学习,深入研究教法,虚心向其他教师学习。...

  • 2025数学工作总结(精选12篇)

    本学期,为响应学校大力提高教学质量的工作要求,我从各方面严格要求自己,认真钻研新课标理念,改进教法,认真对待工作中的每一个细节,积极向其他教师请教教学中出现的问题,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,...

  • 数学个人工作总结(通用13篇)

    生情况分析五(2)班本学期共有40位学生,本学期插入三个学生。接任这个班级已有一个学期,本学期是第二学期,在上学期的共同努力下,我班数学在全段来比较,虽有些进步,从段第四位升到第一位,但相差微乎其微,并且与学区兄弟学校相比较...

  • 数学课题工作总结(精选8篇)

    一、课题研究的准备工作1、建立领导机制,确立实验班级。在县教育部门的亲自指导下,学校成立由校长、教导、教研组长、部分骨干教师组成的课题核心小组,负责实验工作的管理、指导及实施工作,并确立了实验班级和实验老师。...