七年级学期数学工作计划 篇1
一、目标
本班共有学生四五人,由于是普通班,班上男生很多,而且学生身上留有很多不难的习惯。主要表现为,行为较为自由,自觉性较差自主学习能力不强,有的学生还带有小学生的意识,依赖性特别强,作业不能按时完成,上课不能专心听讲,很多人不能尽快适应中学的学习生活。有的家庭情况也比较复杂,家庭结构不完整的较多,通过《中学生日常行为规范》和《礼仪规范》的学习,绝大部分学生懂得用规范约束行为。
二、具体内容
1、注重班委干部培养和建设。通过接触和了解选一些工作能力较强有责任心的学生做班委干部。
2、明确各个班委干部的分工,使他们懂得各负其责,尽自己的最大努力把工作作好,树立为班级体的建设贡献自己力量的思想,同时对自己要求严格,在班上起到榜样的作用。
3、定期召开班委会议,及时了解班级的思想动态和具体情况。
4、对特殊学生通过多种途径采取多种方法开展特殊教育
5、组织学生认真学习《中学生日常行为规范》和《中学生礼仪规范》
三、本学期解决的几个问题
1、学生不能按时完成作业
2、强化规范教育树立规范意识
3、狠抓课堂纪律、课间文明
四、采取的主要措施
1、向学生说明学习的重要性配合好任课教师督促学生完成好各科作业
2、组织学生认真学习《中学生日常行为规范》和《中学生礼仪规范》
3、积极上好每一堂班会课对学生进行有目的的教育
七年级学期数学工作计划 篇2
一、年段情况
本年段共有学生557人,10个教学班均来自各个小学,有不少是留级了二年或三年学生,并有不少有吸烟、打架赌博等不良嗜好。学习成绩也有十几名学生两科总成绩在10分以下,存在的问题尤为突出。
二、工作指导思想
围绕尤溪五中工作计划,结合本年段实际情况来落实我们的日常工作,以强化教学常规管理,以深化教学改革,不断提高教育教学质量,推进教育质量。
三、工作方法与措施
1、抓德育教育
主要培养学生爱国主义精神,集体主义思想,良好的社会公德心,及文明习惯;着力培养学生创新精神和实践能力。
2、帮助学生树立正确的人生观,价值观和社会主义理想信念,增强他们的道德评价能力和自我实践能力。
3、结合政教处,开展以《中学生守则》,《中学生日常行为规范》为主要内容,把学校规章制度落到实处。
4、严格执行学生考勤制度。学生无故旷课两节,及时家访,旷课两节以上及时向政教处汇报,做好家访记录。
5、抓常规教育
配合教务处做好日常常规检查工作,教学工作是学校工作的重中之重。
6、加强集体备课,由备课组长定时间,定地点,定出每周备课内容及各时间段,对学生存在的共同问题进行探讨。语文组每周一第三节,数学每周二第二节,英语每周三第三节,政治组每周四第三节,历史组每周四第四节,地理组每周五第三节,生物每周五第四节,由正负片段长点名检查。
七年级学期数学工作计划 篇3
一、三维目标。
(一)知识与技能。
能运用运算律探究去括号法则,并且利用去括号法则将整式化简。
(二)过程与方法。
经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。
(三)情感态度与价值观。
培养学生主动探究、合作交流的意识,严谨治学的学习态度。
二、教学重、难点与关键。
1、重点:去括号法则,准确应用法则将整式化简。
2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。
3、关键:准确理解去括号法则。
三、教具准备。
投影仪。
四、教学过程,课堂引入。
利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?
五、新授。
现在我们来看本章引言中的问题(3):
在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米 ①
冻土地段与非冻土地段相差100t—120(t-0.5)千米 ②
上面的式子①、②都带有括号,它们应如何化简?
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60
七年级学期数学工作计划 篇4
一、指导思想:
以七年能数学教学大纲为标准,坚决完成《初中数学新课程标准》提出的各项基本教学目标。以学校教学计划为指导,落实推进课程改革,形成先进的课程结构和综合的教学理念,提高教育教学能力,提高学生的综合能力。
二、学情分析:
本班学生刚刚完成小学六年的学习,升入初一,也就是我们现在所说的七年级。通过调阅小六毕业会考成绩册和试卷,发现本班学生的数学成绩不甚理想。从学生作答来看,基础知识不扎实,计算能力较差,思路不灵活,缺乏创新思维能力,尤其是解难题的能力低下。根据学生的实际情况,从生活入手,结合教材内容,精心设计教学方案。通过本学期数学课堂教学,夯实学生的基础,提高学生的基本技能,培养学生学习数学知识和运用数学知识的能力,帮助学生初步建立数学思维模式。最终圆满完成七年级上册数学教学任务。
三、教学目标
1、有理数的运算,对有理数运算法则的理解。
2、掌握整式的加减运算,合并同类项和去括号是进行整式加减的基础。
3、使学生从实物和模型出发,让学生感受到几何知识点的应用无处不在,让学生感受到学习图形与几何知识的重要性和必要性。注意培养学生的学习兴趣,同时注意概念的定义和性质的表述。逐步使学生懂得何语句的意义并能建立几何语句与图形之间的联系,逐步学习用语言正确表达概念、性质。
四、教材分析:
本书共有四章,每章开始均配有反映本章主要内容的章前图和引言。供学生预习用,可做教师导入用。正文设置了“思考、探究、归纳”等栏目。栏目中以问题,留白或填空等形式为学生提供思维发展,合作交流的空间。同时也安排了“阅读和与思考、观察与猜想、实验与探究、信息技术应用”等选用内容;还安排几个有一定综合性、实践性、开放性的数学活动,小结、回顾与思考。学习过程中还有练习、习题、复习题三类。
五、教学措施和方法
1、认真钻研课程教学目标和要求,认真钻研教材。
2、想方设法提高学生在课堂上学习的积极性和兴趣。
3、加强课堂教学设计,用直观式、启发式、探究、共同合作、交流等方法进行教学。
4、充分利用多媒体等教学手段,增加课堂容量,努力提高课堂教学效率。
5、做好学生学习等各方面的评估工作。
六、教学内容及课时、进度安排
具体见备课组统一安排表。
周次教学内容
1-9周上册教科书教学
10周左右阶段性考试
11-17周下册教科书教学
18周进行期末复习
19周进行期末考试
七年级学期数学工作计划 篇5
1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;
2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法
2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。建立一元一次方程的概念。 问题与情境 师生活动 设计意图
一、创设情境,展示问题:
问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2: 章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名 时间 王家庄 10:00 青山 13:00 秀水 15:00 教师展示问题,要求用算术解法,让学生充分发表意见。算术方法:(124+1)÷25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。问题1的算术解法:(50+70)÷2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。 示意图有助于分析问题。
二、寻找关系,列出方程
1、对于问题1,如果设王家庄到翠湖的路程是`千米,则: 路程 时间 速度 王家庄-青山 王家庄-秀水 根据汽车匀速前进,可知各路段汽车速度相等,列方程。
2、比一比:列算式与列方程有什么不同?哪一个更简便?
3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。学生思考回答:
1、王家庄-青山(`—50)千米,王家庄-秀水(`+70)千米。
2、汽车以每小时(`-50)÷3千米的速度从王家庄到青山;以每小时(`+70)÷5千米的速度从王家庄到秀水。 让学生体会:用算术方法解题时,列出的算式只能用已知数,而列方程解题时,方程中既含有已知数,又含有用字母表示的未知数。
三、定义方程,建立模型
1、定义:(板书)含有未知数的等式叫做方程。
练习一:判断下列式子是不是方程,是的打“√”,不是的打“` ”.
(1)1+2=3 ( ) (4) ( ) (2) 1+2`=4 ( ) (5) `+y=2 ( ) (3) `+1-3 ( ) (6) `2-1=0 ( )
练习二:根据下列问题,设未知数并列出方程。
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?解:设正方形的边长为` cm。那么依题意得到方程:_________. (2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的修检时间2450小时?解:经过`月这台计算机的使用时间达到规定的修检时间2450小时,那么依题意得到方程:_________. (3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?解:设这个学校的学生为`,那么女生数为 ,男生数为 . 由此依题意得到方程:________________。 [议一议]:上面的四个方程有什么共同点? 2、定义:只含有一个未知数(元`),未知数的指数是1次,这样的方程叫做一元一次方程。
练习三:判断下列方程哪些是一元一次方程?(1) (2) (3) (4) (5)
3、方程的解:再看刚才列出的方程:4`=24,你能观察出当`=?时,4`的值正好等于24吗。学生回答后总结方程的解和解方程的概念。
4、归纳分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法。 (学生举例并完成练习一) 师生合作,根据数量关系列出方程。
教师结合练习给出方程、一元一次方程的定义。 (我国古代称未知数为元,只含有一个未知数的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右两边相等的未知数的值就是这个方程的解. 教师引导学生对上面的分析过程进行思考,将实际问题转化为数学问题的一般过程。
学生举出方程的例子。 (学生独立思考、互相讨论,先分析出等量关系,再根据所设未知数列出方程) 判断哪些是一元一次方程。 学生单独计算,并填表。 学生得出解决实际问题的模型。
四、训练巩固,课堂小结
1、根据下列问题,设未数列方程,并指出是不是一元一次方程。(1)环形跑道一周长400m,沿跑道跑多少周,可以跑3000m?(2)甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(3)一个梯形的下底比上底多2㎝,高是5㎝,面积是40㎝2,求上底。
2、小结 本节课你学到了哪些知识?哪些方法?
五、布置作业 A、 必做 82页,第1、2、3、题; B、 拓展阿凡提经过了三个城市,第一个城市向他征收的税是他所有钱财的一半又三分之一,第二个城市向他征收的税是他剩余钱财的一半又三分之一,到第三个城市里,又向他征收他经过两次交税后所剩余钱财的一半又三分之一,当他回到家的时候,他剩下了11个金币,问阿凡提原来有多少个金币? C、课堂评价
1、 本节课的主要知识点是:
2、 你对列方程这节课的感受是:
3、 这节课我的困惑是: 解:(1) 设跑`周. 列方程400`=3000
4、 (2)设甲种铅笔买了`枝,乙种铅笔买了(20-`)枝.列方程 0.3`+0.6(20-`)=9 (3)设上底为` cm,下底为(`+2)cm.列方程 学生自己探索,独立完成,集体订正。 学生课后完成,并写学习心得。
七年级学期数学工作计划 篇6
第1课时 认识立体图形与平面图形
教学目标
1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;
2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥.
教学过程
一、情境导入
观察实物及欣赏图片:
我们生活在一个图形的世界中,图形世界是多姿多彩的.其中蕴含着大量的几何图形.本节我们就来研究图形问题.
二、合作探究
探究点一:立体图形
【类型一】 从实物图中抽象立体图形的认识
例1 观察下列实物模型,其形状是圆柱体的是( )
解析:圆柱的上下底面都是圆,所以正确的是D.
方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.
【类型二】 立体图形的名称与分类
例2 如图所示为8个立体图形.
其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.
解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,球为③,故填①②⑤⑦⑧;④⑥;③.
方法总结:正确理解立体图形的定义是解题的关键.
探究点二:平面图形的认识
【类型一】 平面图形的识别
例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为( )
A.5个 B.4个
C.3个 D.2个
解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形.故选B.
方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内.
【类型二】 由平面图形组成的图形
例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?
解:(1)由5个图形组成;
(2)由2个正方形和1个长方形组成;
(3)由3个四边形组成.
方法总结:解决这类问题的关键是正确区分图形的形状和名称.
三、板书设计
1.立体图形
特征:几何图形的各部分不都在同一平面内.
2.平面图形
特征:几何图形的各部分都在同一平面内.
教学反思
本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性.使学生以最佳状态投入到学习中去.通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识.使学生在讨论交流的基础上总结出立体图形和平面图形的特征.
第2课时 从不同的方向看立体图形和立体图形的展开图
教学目标
1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;
2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形.(重点,难点)
教学过程
一、情境导入
《题西林壁》
苏东坡
横看成岭侧成峰,远近高低各不同.
不识庐山真面目,只缘身在此山中.
诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?
二、合作探究
探究点一:从不同的方向观察立体图形
【类型一】 判断从不同的方向看到的图形
例1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是( )
解析:从上面看依然可得到两个半圆的组合图形.故选D.
方法总结:本题考查了从不同的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.
【类型二】 画从不同的方向看到的图形
例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.
解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.
解:如图所示:
方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等.
七年级学期数学工作计划 篇7
1.熟练地进行有理数加减混合运算,并利用运算律简化运算;
2. 培养学生的运算能力。
加减运算法则和加法运算律。
省略加号与括号的计算。
电脑、投影仪
一、从学生原有认知结构提出问题
说出-6+9-8-7+3两种读法.
二、解决问题
1.计算:(1)-12+11-8+39; (2)+45-9-91+5;
(3)-5-5-3-3; (4)-6-8-2+3.54-4.72+16.46-5.28;
2.用较简便方法计算:
-16+25+16-15+4-10.
三、应用、拓展
例1.计算:2/3-1/8-(-1/3)+(-3/8)
练一练:1.P46第1题(1)-(4)题;P46问题解决
例2.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:
(1)a-(b+c); (2)a-b-c; (3)a-(b+c+d); (4)a-b-c-d;
(5)a-(b-d); (6)a-b+d; (7)(a+b)-(c+d); (8)a+b-c-d;
(9)(a-c)-(b-d); (10)a-c-b+d.
请同学们观察一下计算结果,可以发现什么规律?
练一练:1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:
(1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c.
2.分别根据下列条件求代数式·-y-z+w的值:
(1)·=-3,y=-2,z=0,w=5;
(2)·=0.3,y=-0.7,z=1.1,w=-2.1;
七年级学期数学工作计划 篇8
教材分析:
《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。
设计思路:
《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:
复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算
巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况
作业布置、反馈情况。
教学目标:
1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。
3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。
教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。
教学难点:分析实际问题中的相等关系,列出方程。
教学方法:先学后教,当堂训练。
教学准备:多媒体课件等。
预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。
教学过程:
一、准备阶段:
1、知识回顾:
(1)、用合并同类项的方法解一元一次方程的步骤是什么?
(2)、解下列方程:
① -3·-2·=10 ②
2、创设问题情境,导入新课。
问题:
把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?
如何解决这个问题呢?
二、导学阶段:
(一)、出示本节课的学习目标:
1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;
2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。
(二)、合作交流,探究新知
1、分析解决课前提出的问题。
问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?
分析: 设这个班有·名学生.
每人分3本,共分出___本,加上剩余的20本,这批书共____________本.
每人分4本,需要______本,减去缺的25本,这批书共____________本.
这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?
这批书的总数是一个定值,表示它的两个式子应相等,
即表示同一个量的两个不同的式子相等.
根据这一相等关系列得方程:
方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?
方法过程:
2、总结移项的概念。
像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .
3、思考:上面解方程中“移项”起到了什么作用?
4、例题学习
运用移项的方法解下列方程:
三、课堂练习:
运用移项的方法解下列方程:
四、课堂小结:
本节课,我们学习了哪些知识?你还有哪些困惑?
五、达标测试:
运用移项的方法解下列方程:(25′4=100′)
六、预习作业:
1、预习作业:自学课本第90页的课文内容及例4,完成第90页练习2题;
2、课后作业:(1)
七年级学期数学工作计划 篇9
一、指导思想
坚持党的基本路线,拥护中国共产党的领导,贯彻党的教育方针、政策,使自己真正成为时代前进的促进派。认真学习《教师法》、《教育法》、《义务教育法》、《教师职业道德规范》及《未成年人保护法》等法律法规,使自己对各项法律法规有更高的认识,做到以法执教。忠诚于党的教育事业,立足教坛,无私奉献,全心全意地搞好教学工作,做一名合格的人民教师。
二、学生情况分析
本学期我担任七年级3班数学教学,该班共有学生38人。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。
三、教学目标
(一)知识与技能
1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。
2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。
3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。
(二)过程与方法
1.采用思考、类比、探究、归纳、得出结论的方法进行教学;
2.发挥学生的主体作用,作好探究性活动;
3.密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力.
(三)情感态度与价值观
1.理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。
2.逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。
四、教材章节分析
第一章《有理数》
1.本章的主要内容:
对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。
重点:有理数加、减、乘、除、乘方运算
难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。
2.本章的地位及作用
本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。
第二章《整式的加减》
1.本章的主要内容
列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。
重点:去括号,合并同类项。
难点:对单项式系数,次数,多项式次数的理解与应用。
2.本章的地位及作用
整式是简单代数式的一种形式,在日常生活中经常要用整式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。
第三章《一元一次方程》
1.本章的主要内容
列方程,一元一次方程的概念及解法,列一元一次方程解应用题。
重点:列方程,一元一次方程的解法,
难点:解有分母的一元一次方程和应用一元一次方程解决实际问题。
2.本章的地位及作用
一元一次方程是数学中的主要内容之一,它不仅是学习其它方程的基础,而且是一种重要的数学思想——方程思想,利用方程思想可以使许多实际问题变得直接易懂,体会方程是刻画现实世界的一个有效的数学模型。更深刻地体会数学的应用价值。
第四章《图形认识初步》
1.本章的主要内容、地位及作用
本章主要介绍了多姿多彩的图形(立体图形、平面图?),以及最基本的图形——点、线、角等,并在自主探究的过程中,结合丰富的实例,探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较及余角,补角等,探索了比较线段长短的方法及线段中点。本章中的直线,射线,线段以及角等,都是我们认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。
2.教学重点与难点
教学重点:(1)角的比较与度量;(2)余角、补角的概念和性质;(3)直线、射线、线段和角的概念和性质
教学难点:(1)用几何语言正确表达概念和性质;(2)空间观念的建立。
五、具体教学策略
1.认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,让学生学会认真学习。
2.兴趣是的老师,激发学生的兴趣,给学生介绍数学家、数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3.引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。
4.引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5.运用读新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念,将带来不同的教育效果。
6.培养学生良好的学习习惯,有助于学生进步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
7.进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
8.站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。
9.开展课题学习,把学生带入研究的学习中,拓展学生的知识面。
六、进度安排
教学内容课时
1.1正数和负数1课时
1.2有理数4课时
1.3有理数的加减法4课时
1.4有理数的乘除法5课时
1.5有理数的乘方3课时
本章复习2课时
2.1整式2课时
2.2整式的加减3课时
本章复习2课时
3.1从算式到方程4课时
3.2从古老的代数说起—一元一次方程的讨论(1)4课时
3.3从“买布问题”说起—一元一次方程的讨论(2)4课时
3.4再探实际问题和一元一次方程4课时
本章复习2课时
4.1多姿多彩的图形4课时
4.2直线、射线、线段2课时
4.3角的度量3课时
4.4角的比较和运算3课时
本章复习2课时
七年级学期数学工作计划 篇10
【第一部分】知识点分布
1、 一元一次方程的解(重点)
2、 一元一次方程的应用(难点)
3、 求解一元一次方程及其在实际问题中的应用(考点)
【第二部分】关于一元一次方程
一、一元一次方程
(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)求方程的解的过程,叫做解方程。
二、等式的性质
(1)用等号“=”表示相等关系的式子叫做等式。
(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
【第一部分】知识点分布
1、 一元一次方程的解(重点)
2、 一元一次方程的应用(难点)
3、 求解一元一次方程及其在实际问题中的应用(考点)
【第二部分】关于一元一次方程
一、一元一次方程
(1)含有未知数的等式是方程。
(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。
(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。
(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。
(6)求方程的解的过程,叫做解方程。
二、等式的性质
(1)用等号“=”表示相等关系的式子叫做等式。
(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c=b±c.
(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;
如果a=b且c≠0,那么
(4)运用等式的性质时要注意三点:
①等式两边都要参加运算,并且是作同一种运算;
②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;
③等式两边不能都除以0,即0不能作除数或分母。
三、一元一次方程的解
1、解一元一次方程——合并同类项与移项
(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。
2、解一元一次方程——去括号与去分母
(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
(3)工作总量=工作效率工作时间。
(4)工作量=人均效率人数时间。
四、实际问题与一元一次方程
(1)售价指商品卖出去时的的实际售价。
(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。
(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。
(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。
(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价利润率;
(6)产油量=油菜籽亩产量含油率种植面积。
(7)应用:行程问题:路程=时间速度;
工程问题:工作总量=工作效率时间;
储蓄利润问题:利息=本金利率时间;
本息和=本金+利息。
(4)运用等式的性质时要注意三点:
①等式两边都要参加运算,并且是作同一种运算;
②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;
③等式两边不能都除以0,即0不能作除数或分母。
三、一元一次方程的解
1、解一元一次方程——合并同类项与移项
(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。
(2)把等式一边的某项变号后移到另一边,叫做移项。
(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。
2、解一元一次方程——去括号与去分母
(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。
(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。
(3)工作总量=工作效率工作时间。
(4)工作量=人均效率人数时间。
四、实际问题与一元一次方程
(1)售价指商品卖出去时的的实际售价。
(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。
(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。
(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。
(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价利润率;
(6)产油量=油菜籽亩产量含油率种植面积。
(7)应用:行程问题:路程=时间速度;
工程问题:工作总量=工作效率时间;
储蓄利润问题:利息=本金利率时间;
本息和=本金+利息。
七年级学期数学工作计划 篇11
教学目的:
知识与技能目标:
会进行整式加减的运算,并能说 明其中 的算理,发 展有条理的思考及其语言表达能力。
过程与方法:
通过探索 规律的问 题,进一步体会符号表示的意义,
通过 对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.
教学重点、难点:
重点:整式加减的运算。
难点:探索规律的猜想。
授课时间:
教学过程:
Ⅰ.创设现实情景,引入新课
摆第1个小屋子需要5枚棋子,摆第2个需要 枚棋 子,摆 第3个需要 枚棋子。
按照这样的方式继续摆下去。
(1)摆第10个这样的小屋子需要 枚棋子
(2)摆第n个这样的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问 题吗?小组讨论。
Ⅱ.根据现实情景,讲授新课
例题讲解:
练习:1、计算:
(1)(11x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8x y-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,计算:(1)B-A (2)A-3B
Ⅲ.做一做
P11 随堂练习
Ⅳ.课时小结
要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
Ⅴ.课后作业
P12习题1.3:1(2)、(3)、(6),2。
板书设计:
第二节 整式的加减(2)
一、旅游中发现的几何体
二、生活中常见的几何体
VI.教学后记
七年级学期数学工作计划 篇12
第一课时
平面图形的认识
教学目标:通过复习使同学进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以和各图形的联系。‘
教学过程:
直线、射线、线段。
提问:1)分别说一说什么叫直线、射线、线段?
直线、射线和线段有什么区别?
完成123页上面的“做一做”。(同学笔做)
角
提问:1)什么叫做角?
2)角的大小与什么有关?
整理:把表中的空格填写完整。
完成123页下面“做一做”的1题、2题。
锐角
直角
钝角
平角
周角
大于0°
小于90°
垂直与平行
提问:
1)在同一平面内,两条直线的相互位置有哪几种情况?
2)什么样的两条直线叫做互相垂直?
什么样的两条直线叫做互相平行?
回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平
完成教材124页的“做一做”
三角形。
提问:
1)什么叫做三角形?
2)在下面的三角形中,顶点A的对边是指哪一条边?
先笔做:以顶点A的对边为底,画出三角形的高,并标出底和高。(前页一幅图)
在下面的表中填写三角形的名称和各自的特征。
名称
图形
特征
回答:锐角三角形、直角三角形、钝角三角形的联系与区别。
四边形
提问:什么叫四边形?
回答:看图说出下面各图的特点,再说一说图中各字母表示什么
想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?
完成125页“做一做”中的1、2题。
七年级学期数学工作计划 篇13
教学目标
1.知识与技能
(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;
(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.
2.过程与方法
(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.
(2)经历问题解决的过程,提高解决问题的能力.
3.情感态度与价值观
(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;
(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.
重、难点与关键
1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.
2.难点:立体图形与平面图形之间的转化是难点.
3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.
教具准备
长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个)教学挂图
教学过程
一、引入新课
1.打开课本,看第117页城市的现代化建筑,学生认真观看.
2.提出问题:有哪些是我们熟悉的几何图形?
二、新授
1.学生在回顾刚才所看的图后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验.
2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等.
教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.
3.立体图形的概念.
(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.
(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)
(3)用教学挂图展示图4.1-4
(4)提出问题:在挂图中中,包含哪些简单的平面图形?
(5)探索解决问题的方法.
①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.
②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.
4.平面图形的概念.
长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形. 注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.
5.立体图形和平面图形的转化.
(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.
(2)提出问题.
从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?
(3)探索解决问题的方法.
①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.
②进行小组交流,评价各自获得的结论,得出正确结论. ③指定三名学生,板书画出的图形.
6.思考并动手操作.
七年级学期数学工作计划 篇14
1.能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列 出方程.
2.理解方程、一元一次方程的定义及解的概念.
3.掌握检验某个数值是不是方程的解的方法.
阅读教材P78~80,思考下列问题.
什么是方程、一元一次方程及它们的 解?怎样列方程?
知识探究
1.含有未知数的等式叫方程.只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程.
2.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.
自学反馈
根据下面实际问题中的数量关系,设未知数列出方程:
1.用一根长为2 4 cm的铁丝围成一个正方形,正方形的边长为多少?
解:设正方形的边长为` cm,列方程得:4`=24.
2.某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?
解:设这个学校的学生数为`,则女生数为52%`,男生数为52%`-80,依 题意得方程:52%`+52%`-80=`.
3.练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元.问:小明买了几本练习本?
解:设小明买了`本,列方程得:0.8`=10-4.4.
4.长方形的周长为24 cm,长比宽多2 cm,求长和宽分别是多少.
解:设长为`cm,则宽为(`-2)cm,依题意得方程:2(`+`-2)=24.
先设未知数,再找相等关系,列方程.[来源:学+科+网Z+`+`+K]
活动1 小组讨论
例1 判断下列是不是一元一次方程,是打“√”,不是打.
①`+3=4;(√)
②-2`+3=1;(√)
③2`+13=6-y;()
④1`=6;()
⑤2`-8>-10;()
⑥3+4`=7`.(√)
例2 检验2和-3是否为方程`-52-1=`-2的解.
解:-3是,2不是.
带入方程中左右两边相等的值就是方程的解.
例3 设未知数列出方程:
(1)用一根长为100 cm的铁丝围成一个正方形,正方形的边长为多少?
(2)长方形的周长为40 cm,长比宽 多3 cm,求长和宽分别是多少.
(3)某校女生人数占全体学生数的55%,比男生多50人,这个学校有多少学生?
(4)A、B两地相距200千米,一辆小车从A地开往B地,3小时后离B地还有20千米,求小车的平均速度.
解:略.
设未知数,找等量关系,用方程表示简单实际问题中的相等关系.
活动2 跟踪训练
1.下列方程的解为`=2的是(C)
A.5-`=2
B.3`-1=4-2`
C.3-(`-1)=2`-2
D.`-4=5`-2
2.在2+1=3,4+`=1,y2-2y=3`,`2-2`+1中,一元一次方程有(A)
A.1个 B.2个 C.3个 D.4个
3.老师要求把一篇有2 000字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出方程的解)
解:设小华要`分钟完成,由题意,得
50`+700=2 000,
`=26.
活动3 课堂小结
1.方程及一元一次方程的定义.
2.如何列方程,什么是方程的解.
3.1.2 等式的性质
1.了解等式的两条性质.
2.会用等式的性质解简单的一元一次方程.
阅读教材P81~82,思考下列问题.
1.等式的性质有哪几条?用字母怎样表示?字母代表什么?
2.解方程的依据是什么?
知识探究
1.如果a=b,那么a±c=b±c(字母a、b、c可以表示具体的数,也可以表示一个式子).
2.如果a=b,那么ac=bc.
3.如果a=b(c≠0),那么ac=bc.
自学反馈
1.已知a=b,请用“=”或“≠”填空:
(1)3a=3b;(2)a4=b4;(3)-5a=-5b.
2.利用等式的性质解下列方程:
(1)`+7=26;
(2)- 5`=20;
(3)-2(`+1)=10.
解:(1)`=19.(2)`=-4.(3)`=-6.[来源:学_科_网]
注意用等式的性质对方程进行逐步变形,最终可变形为“`=a”的形式.
活动1 小组讨论
例 利用等式的性质解下列方程并检 验:
(1)`-9 =6;
(2)-0.2`=10;
(3)3-13`=2;
(4)-2`+1=0;
(5)4(`+1)=-20.
解:(1)`=15.(2)`=-50.(3)`=3.(4)`=12.(5)`=-6.
运用等式的性质解方程不能漏掉某一边或某一项.
活动2 跟踪训练
利用等式的性质解下列方程并检验:
(1)`+5=8;[来源:学|科|网Z|`|`|K]
(2)-`-1=0;[来源:学+科+网Z+`+`+K]
(3)-2-14`=2;
(4)6`-2=0.
解:(1)`=3.(2)`=-1.(3)=-16.(4)`=13 .
活动3 课堂小 结
1.等式有哪些性质?
2.在用等式的性质解方程时要注意什么?
会从实际问题中抽象出数学模型,会用一元一次方程解决电话计费等有关方案决策的问题.
阅读教材P104~105探究3的内容,思考题中所提出的问题.
知识探究
方案决策问题解题的基本方法是求得每种方案的结果,再结合结果做出判断.[来源:壹文网]
自学反馈
某市乘公交车(非空调)每次需投币1.5元或者购买IC卡,每次刷卡扣款1.35元,但办理IC卡时需付工本费15元.问需乘坐公交车多少次时两种收费方式的收费一 样?当超过这个次数后哪种收费方 式较合算?[来源:Z``]
解:100次,购买IC卡合算.
活动1 小组讨论
例 (教 材P104探究3)电话计费问题
下表中有两种移动电话计费方式.
月使用
费/元 主叫限定
时间/min 主叫超时
费/(元/min) 被叫
方式一 58 150 0.25 免费
方式二 88 350 0.19 免费
考虑下列问题:
(1)设一个月 用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费;
(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
活动2 跟踪训练
某厂招聘运输工,有两种方法来结算工资,一种是每月基本工资300元,每运1吨货给15元;另一种是没有基本工资,每运1吨货给20元.问每月运多少吨货时两种结算方法给的工资一样多?如果某工人每月可运货70吨,那么用哪种结算方法可多拿工资?
解:60吨,用第二种结算方法可多拿工 资.
活动3 课堂小结
电话计费等有关的方案决策问题.