首页 > 工作计划 > 高一数学学习计划(精选5篇)

高一数学学习计划

时间:2025-03-29

高一数学学习计划 篇1

  1、独立思考。

  初中阶段感兴趣的数学难题,回顾初中老师扩展的数学知识,在没有任何压力的情况下享受攻难克艰的乐趣,感受数学的魅力。

  2、强化运算能力。

  高中数学在运算速度、准确度、精细度方面的要求都要远远高于初中,也是高考重点考察的一种能力,要通过强化训练提升运算能力。

  3、常用知识。

  高中学习中的常用知识,如分解因式、二次函数、一元二次方程、平面几何等,力求在数学知识、方法、思想方面恰当进行初中和高中的衔接,同学们要自主学习和思考,做一做相关练习题,打好基础,可以让你赢在高中的起点。

  4、关注数学思想方法的进一步学习,数学思想方法是数学的灵魂。比如:

  类比法——引导我们探求新知;

  归纳猜想——我们创新的基石;

  分类讨论——化难为易的突破口;

  等价转化——解决问题的桥梁。

  如果在这方面做得好的话,那么从一开始你就走在了前面。成功更是成功之母,如果你比其他同学适应得快,那么无疑你的进步会比别人快,从而形成一个增长的良性循环。

  5、认真阅读高一数学课本。

  从整体上把握教材内容,仔细揣摩教材字里行间所蕴含的玄机,完成课后练习,争取带着疑问入校,激发入校后的求知欲,尽快地让数学成为你的知心朋友。

  初高中学习方式最大的区别在于自主学习的能力,提前适应自主学习能够更快的适应高中的学习生活。

  6、拓宽知识面,培养对数学的兴趣。

  提醒对数学尤其对数学竞赛感兴趣的同学,充分利用开学前这段时间,多研究一些有关竞赛的相关书籍,多积累一些竞赛基础知识,为高中数学竞赛学习打下良好的基础。

高一数学学习计划 篇2

  1.独立思考。

  初中生对数学问题感兴趣。复习初中老师拓展的数学知识,享受克服困难的乐趣,感受数学的魅力,没有任何压力。

  2.加强计算能力。

  高中数学对运算速度、准确性、精细度的要求比初中高得多,也是高考重点培养的一种能力。有必要通过强化训练来提高操作能力。

  3.常识。

  高中学习的常识,如因式分解、二次函数、一元二次方程、平面几何等。,力求在数学知识、方法和思想等方面把初中和高中恰当地联系起来。学生要独立学习和思考,做好相关的练习,打好基础,才能让你在高中起点上取得胜利。

  4.重视数学思维方法的深入研究,这是数学的灵魂。例如:

  类比——引导我们探索新知识;

  归纳猜想——我们创新的基石;

  分类讨论——化难为易的突破口:

  等效变换-解决问题的桥梁。

  如果你在这方面做得好,你将从一开始就领先。成功是成功之母。如果你比其他同学适应得更快,你的进步无疑会比别人更快,从而形成一个良性的成长循环。

  5.仔细阅读高一的数学课本。

  从整体上把握教材内容,仔细揣摩教材字里行间的奥秘,课后完成习题,争取带着问题入校,激发入校后的求知欲,让数学早日成为你的知音。

  初中和高中最大的区别在于自主学习的能力。提前适应自主学习可以更快地适应高中的学习生活。

  6.拓宽知识面,培养数学兴趣。

  提醒对数学特别是数学竞赛感兴趣的同学,充分利用开学前的时间,多学习竞赛方面的书籍,积累更多竞赛基础知识,为高中数学竞赛的学习打好基础。

高一数学学习计划 篇3

  1、提高教学质量。要提高教学质量,关键是上好课。为了上好课,我决定做好下面的工作:

  ⑴课前准备:备好课。

  ①认真钻研教材,对教材的基本思想、基本概念,每句话、每个字都弄清楚,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。

  ②了解学生原有的知识技能 ,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。

  ③考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。

  ⑵课堂上的情况。 组织好课堂教学,关注全体学生,注意信息反馈,调动学生的有意注意,使其保持相对稳定性,同时,激发学生的情感,使他们产生愉悦的心境,创造良好的课堂气氛,课堂语言简洁明了,克服以往教学中存在的毛病,课堂提问面向全体学生,注意引发学生学习的兴趣,课堂上讲练结合,布置好家庭作业,作业少而精,减轻学生的负担。

  2、做好课后辅导。要提高教学质量,还要做好课后辅导工作,小学生爱动、好玩,缺乏自控能力,常在学习上不能按时完成作业,有的学生记错作业。针对这种问题,抓好学生的思想教育,并使这一工作贯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始,从赞美着手,所有的人都渴望得到别人的理解和尊重,所以,和差生交谈时,对他的处境、想法表示深刻的理解和尊重,还有在批评学生之前,先谈谈自己工作的不足。

  3、提高自身的业务水平。 积极参与听课、评课,虚心向同行学习教学方法,博采众长,提高教学水平。

  4、培养多种兴趣爱好,博览群书,多看相关书籍,不断扩宽知识面,为教学内容注入新鲜血液。

高一数学学习计划 篇4

  (一)认真按时完成教学任务,本学期学完高一数学的全部内容,并力争挤出时间学习高二数学的第一章,为高三学习争取更多的时间。

  (二)继续实施“导学案教学方法”完善导学案,形成集美中学特色的教学方法,培养学生自我学习的能力和习惯,使学生做到简单知识自己能学会,较难知识在老师点拔下能学会,难度大的知识在老师的讲解下能轻松学会。

  (三)教师间相互听课,每周每个教师听课不少于两节,并及时的反馈交流,互相取长补短使老教师呆板陈旧的教学方法变得活泼生动,充满生机,使新教师教学水平逐步走向成熟而稳健;组织好期中、期末的复习、考试、出题、评卷、讲评、个别指导工作,约在12周左右进行期中考试。

  (四)加强尖子生的培养工作,定期对他们进行辅导或者跟踪检测,以使他们成为全市的数学尖子,为学校争光,进而带动全校数学成绩的提高,提高集美中学的数学层次。

  (五)重点工作放在中下等学生的教学、管理、辅导、心理调节与学习方法指导上,使他们学所有所得、学有所成,培养他们的自信心,自我学习的意识和能力,着眼于学生的未来,迫使他们养成良好的学习习惯,思维习惯,行为习惯,以期在高考中取得优异成绩,为学校赢得更大的荣誉。

高一数学学习计划 篇5

  、

  Ⅰ.教学内容解析

  本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.

  这是指数函数在本章的位置.

  指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.

  指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.

  Ⅱ.教学目标设置

  1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.

  2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.

  3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.

  4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.

  Ⅲ.学生学情分析

  授课班级学生为南京师大附中实验班学生.

  1.学生已有认知基础

  学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.

  2.达成目标所需要的认知基础

  学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.

  3.难点及突破策略

  难点:1. 对研究函数的一般方法的认识.

  2. 自主选择底数不当导致归纳所得结论片面.

  突破策略:

  1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.

  2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.

  3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.

  Ⅳ.教学策略设计

  根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.

  学生的自主学习,具体落实在三个环节:

  (1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.

  (2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.

  (3)性质应用阶段,学生自主举例说明指数函数性质的应用.

  研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.

  Ⅴ.教学过程设计

  1.创设情境建构概念

  师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?

  师:大家知道细胞分裂的规律吗?(出示情境问题)

  [情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

  [情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

  [师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.

  师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

  〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

  [设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.

  [师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.

  [教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.

  方案1:

  生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

  师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

  生:函数y=0.5x,y= x,y=(-2)x,y=1x…

  师:板书学生举例(停顿),好像有不同意见.

  生:底数不能取负数.

  师:为什么?

  生:如果底数取负数或0,x就不能取任意实数了.

  师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.

  (若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R?你们所举的例子中,定义域是否为R?)

  师:这些函数有什么共同特点?

  生:都有指数运算.底数是常数,自变量在指数位置.

  (若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)

  师:具备上述特征的函数能否写成一般形式?

  生:可以写成y=ax(a>0).

  师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

  方案2:

  生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))

  师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

  生:函数y=0.5x,y= x,…

  师:这些函数的自变量是什么?它们有什么共同特点?

  生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.

  师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?

  生:底数不能取负数.

  师:为什么?

  生:如果底数取负数或0,x就不能取任意实数了.

  师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

  [阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.

  [意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.

  2.实验探索汇报交流

  (1)构建研究方法

  师:我们定义了一个新的函数,接下来,我们研究什么呢?

  生:研究函数的性质.

  〖问题2你打算如何研究指数函数的性质?

  [设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.

  [师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.

  [教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.

  师:(稍等片刻)我们一般要研究哪些性质呢?

  生:变量取值范围(定义域、值域)、单调性、奇偶性.

  师:(板书学生回答)怎样研究这些性质呢?

  生:先画出函数图象,观察图象,分析函数性质.

  生:先研究几个具体的.指数函数,再研究一般情况.

  师:板书“画图观察”,“取特殊值”

  (若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)

  (若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))

  [意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.

  (2)自主探究汇报交流

  师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.

  〖问题3选取数据,画出图象,观察特点,归纳性质.

  [设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.

  由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.

  数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.

  [师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.

  [教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.

  生:自主选择数据,在坐标纸上列表作图,列出函数性质.

  师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)

  生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.

  师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?

  师:(用彩笔描粗图象,故意出错)错在哪里?为什么?

  生:指数函数是单调递增的,过定点(0, 1).

  师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).

  师:指数函数还有其它性质吗?

  师:也就是说值域为(0, +∞).

  生:指数函数是非奇非偶函数.

  师:有不同意见吗?

  生:当0

  (其它预设:

  (1)当a>1时,若x>0,则y>1;若x1.

  (2)学生画出y=2x和y=3x图象,得出函数递增速度的差异.

  (3)画出y=2x和y=0.5x图象,得到底数互为倒数的指数函数图象关于y轴对称.)

  师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0

  [阶段小结] 指数函数y=ax(a>0且a≠1)具有以下性质:

  ①定义域为R.

  ②值域为(0, +∞).

  ③图象过定点(0, 1).

  ④非奇非偶函数.

  ⑤当a>1时,函数y=ax在(-∞, +∞)上单调递增;

  当0

  ⑥函数y=ax与y=x (a>0且a≠1)图象关于y轴对称.

  ⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:

  x∈(-∞, 0)时,y=ax图象在y=bx图象下方;

  x=0时,两图象相交;

  x∈(0,+∞)时,y=ax图象在y=bx图象上方.

  [意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.

  3.新知运用巩固深化

  (方案一)(分析函数性质的用途)

  师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

  师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0, 1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?

  生:可以求最值,可以比较两个函数值的大小.

  师:那你能举出运用指数函数单调性比大小的例子吗?(提示:既然是运用指数函数单调性,那应该有指数式.)

  生:(举例并判断大小.)

  师:你考察了哪个指数函数?怎么想到的?(规范表述)

  师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)

  (方案二)

  师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?

  师:(口述并板书)你能比较32与33的大小吗?

  生:直接计算比较.

  师:那比较30.2与30.3的大小呢?能不能不计算呢?

  生:利用函数y=3x的单调性.

  师:能具体说明吗?(引导学生规范表达)我们再试一试.

  (出示例1)

  【例1】比较下列各组数中两个值的大小:

  ①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.

  [设计意图] 引导学生运用指数函数性质.对于 32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.

  [师生活动]学生板演,教师组织学生点评.

  [教学预设] ①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.

  师:(引导学生规范表达)你考察了哪个指数函数?根据函数的什么性质?

  师:(对③的引导)你考虑利用哪个函数?是y=1.5x还是y=0.8x?这两个函数有什么关联?(引导学生画出图象,从形上提示:图象有什么关联?)

  生:它们都过点(0, 1).

  师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?

  生:比较1.50.3,0.81.2和1的大小.

  师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.

  【例2】

  ①已知3x≥30.5,求实数x的取值范围;

  ②已知0.2x12 则 x>16

  ( 4 )若3x>12则 x>4

  【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。通过复习既找准了旧知停靠点,又创设了一种情境,给学生提供了类比、想象的空间,为后续学习做好了铺垫。

  温故知新

  问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?

  等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

  估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,b经过怎样的变形得到的,应该应用不等式的哪条基本性质。由学生思考后口答。

  【设计意图】对学生进行推理训练,让学生明白,叙述要有根据,进一步提高学生的逻辑思维能力和语言表达能力。

  2、你认为在运用不等式的基本性质时哪一条性质最容易出错,应该怎样记住?

  【设计意图】及时进行学习反思,总结经验,通过相互评价学习效果,及时发现问题、解决知识盲点,培养学生的创新精神和实践能力。

  3.小明的困惑:

  小明用不等式的基本性质将不等式m>n进行变形,两边都乘以4,4m>4n,两边都减去4m, 0>4n-4m,即0>4(n-m),两边都除以(n-m),得0>4,0怎么会大于4呢?

  小明可糊涂了……聪明的同学,你能告诉小军他究竟错在什么地方吗?同桌讨论。

  【设计意图】通过替人排忧解难,强化对不等式三个基本性质的理解与运用,突出重点,突破难点。

  4.火眼金睛

  ①a>2, 则3a___2a

  ②2a>3a,则 a ___ 0

  【设计意图】通过变式训练,加深学生对新知的理解,培养学生分析、探究问题的能力。

  课堂小结:

  这节课你有哪些收获?有何体会?你认为自己的表现如何?教师引导学生回顾、思考、交流。

  【设计意图】回顾、总结、提高。学生自觉形成本节的课的知识网络。

  思考题:你来决策

  咱们班的王帅同学准备在五、一期间和他的爸爸、妈妈外出旅游。青年旅行社的标准为:大人全价,小孩半价;方正旅行社的标准为:大人、小孩一律八折。若两家旅行社的基本价一样,你能帮王帅同学考虑一下选择哪家旅行社更合算吗?

  【设计意图】利用所学的数学知识,解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。既培养了学生用数学知识解决实际问题的能力,又树立了学好数学的信心。

相关内容
  • 英语作文学习计划(精选13篇)

    At the beginning of this term, I made a plan for my study。 Now, I find that I carry it out well in the past month。 I was poor in Chinese and English last semester。...

  • 理论学习计划(精选12篇)

    一、指导思想深入学习实践科学发展观,以党的群众路线教育活动为动力,着力在武装头脑、指导实践、推动工作上取得新成效,不断提高运用理论解决实际问题的本领,为贡献我镇经济平稳较快发展和各项事业的不断进步提供强大的精神动力和思想...

  • 会计学习计划(精选13篇)

    随着大学的扩招,毕业人数的增加,工作不再由国家分配,大学生毕业的黄金时期悄然而逝,应对激烈的竞争,大学生的就业形势也一年比一年严峻,然而市场需求却没有明显的增加,供需矛盾仍然十分突出,就业压力仍然很大。...

  • 年度学习计划(精选13篇)

    时间真快,201__过去了,201__新学期又开始了,为更好发挥党员教师的先锋模范作用,我将认真落实科学发展观,充分发挥党员的先锋模范作用,以党章的要求严格要求自己。特制定本年度党员学习计划。一、加强理论学习。...

  • 一周学习计划(通用14篇)

    计划施行目的每一天匆忙的生活在大学校园里,总觉得自己个性的忙。像谢老师说的那样,自己总是忙忙碌碌却不知道把时刻花在哪里了。因此,我决定为自己做一个一礼拜的学习计划,当然,除了这个短的计划,我也务必为自己的人生做一个长期的...

  • 学期学习计划(精选15篇)

    一、在校计划表1、上课老师没有让讨论的时候不能够和同桌说悄悄话,打乱课堂秩序。2、在学校要有礼貌,见到老师时要问好,放学时要对老师说再见。3、下课的时候,能够在操场上玩耍或在教室里安静地看课外书,不能够追逐打闹。...

  • 大四学习计划(精选12篇)

    时间过的很快,又是考试周,转眼这个学期就结束了,即将来临的是暑假,没有那种兴奋的心情,更多的是对下个学期以及即将来临的毕业的考虑,下个学期步入大四或这个学期结束,我们的大学生活就基本结束了。...

  • 计算机学习计划(精选10篇)

    一、转变思维,积极行动。我们知道,无论你学的是什么,技术还是知识,最难的一环就是你能不能改变主意,付诸行动。因此,我从改变自己的想法开始。...

  • 制定英语学习计划(精选14篇)

    早上6点-8点:一日之计在于晨,对一般人来说,疲劳已消除,头脑最清醒,体力亦充沛,是学习的黄金时段早上8点-9点:据试验结果显示,此时人的耐力处于最佳状态,正是接受各种“考验”的好时间可安排难度大的攻坚内容上午9点-11点:试验表...

  • 儿童学习计划(精选5篇)

    一.学习目标(具体时间安排根据实际情况而定)1.语文和数学单科成绩保持在95分以上。2.总成绩保持在班级前五名。二.学习计划1.每日阅读一小时(12:30——13:30)每日一篇日记。(13:30——14:00)每日诵读古诗词一首。...

  • 学习提高计划(精选5篇)

    随着课程改革的深入,教师的要求很高,因此,我要不断提高自己的生物理论水平和专业知识水平。按时完成学校安排各项任务,注意提高自己的文化素质,苦练扎实的基本功,脚踏实地的抓好教师业务学习,通过自主学习来满足现代教育的需要,全...

  • 月考学习计划(精选5篇)

    语文:多看一下笔记,回忆老师上课着重讲的知识点,把该背下来的东西背下来。 数学:提高做题速度,将书上的定理过一遍,再做点习题英语:把该记的单词找人帮忙听写一遍,把重点句子,句型记牢,语法背好 政治:看一下书上的内容,想想老...

  • 课堂学习计划(通用5篇)

    课堂教学作为师生活动的中心环节和基本的组织形式,是学生获取知识、锻炼能力和提高各种技能的主要途径。那么,如何构建优质高效课堂是每位数学教师理应思考、探索的主要课题。...

  • 大专学习计划(精选7篇)

    随着社会的不断发展和进步,教育水平也逐渐得到了提高,越来越多的年轻人都希望能够接受高等教育并获得更好的职业发展机会。大专学历因其相对低廉的学费和较为轻松的学习压力而备受青睐,然而,在选择大专学习之后,我们必须制定一个完善...